• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 608
  • 498
  • 151
  • 125
  • 70
  • 10
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 1731
  • 333
  • 251
  • 230
  • 229
  • 181
  • 125
  • 108
  • 106
  • 104
  • 100
  • 100
  • 96
  • 87
  • 86
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Reservoir Characterization and Outcrop Analogs to the Navajo Sandstone in the Central Utah Thrust Belt Exploration Play

Dalrymple, Ashley 07 July 2007 (has links) (PDF)
Reservoir heterogeneity plays an important role in oil field economics and completion strategies. We herein characterize the reservoir heterogeneity of the Early Jurassic Navajo Sandstone in the Justensen Flat/Devils Canyon area of the San Rafael Swell, Utah. These outcrops are located approximately 60 kilometers (45 mi) east of the recently discovered Covenant oil field which is located in the central Utah thrust belt exploration play. The reservoir for the Covenant field is the Navajo Sandstone. This study can serve as an outcrop analogue for this developing play and other eolian reservoirs worldwide. There are eight facies within the Navajo Sandstone in the Justensen Flat/Devils Canyon area based on differences in primary and secondary sedimentary structures, sedimentary texture, petrology, porosity/permeability, and other macro-scale features of the outcrop. Three facies were deposited by eolian dunes. These serve as the primary reservoir facies of the Navajo in the Justensen Flat/Devils Canyon area, displaying relatively high porosity and permeability (approximately 28 percent porosity and 100 mD of permeability). Five interdune facies display finer grain size, more abundant cement, and relatively lower porosity and permeability (approximately 18 percent porosity and 29 mD of permeability). Four of the five inderdune facies have variable porosity and permeability or are not laterally extensive (tens of meters). These four facies act as baffles to fluid flow within the reservoir. One interdune facies, the Wavy Algal Matted facies (WAM), displays very low porosity (10 percent) and permeability (0.265 mD) based on 4 samples, and is laterally extensive in the field area (greater than 1 km2). There are nine facies in the Wolverine Federal 17-3 core from the Covenant Field, four of which are tidally influenced. This is unique compare to the Justensen Flat/Devils Canyon outcrop. Tidal influence was apparently present in western Utah but did not have a direct influence on sedimentation 60 kilometers (45 mi) to the east. The Large Trough Cross-stratified (LTC) facies, which serves as the primary reservoir of the Navajo Sandstone, was observed in both outcrop and core. The laterally extensive, low permeability WAM facies was also present in both core and outcrop, suggesting the possibility of reservoir partitioning within oil fields having eolian reservoirs similar to the Navajo Sandstone.
282

Evaluating Climate Change Effects in Two Contrasting Reservoirs Using Two-Dimensional Water Quality and Hydrodynamic Models

Obregon, Oliver 13 March 2012 (has links) (PDF)
I analyzed and compared impacts from global climate change (GCC) and land use change to Deer Creek (United States) a temperate reservoir and Aguamilpa (Mexico), a tropical reservoir by using calibrated CE-QUAL-W2 (W2) water quality and hydrodynamic models based on field data over an extended time period. I evaluated and compared the sensitivity to predicted GCC and land use changes. I individually evaluated changes to air temperature (TAIR), inflow rates (Q), and nutrient loads (PO4-P and NO3-NO2-N) followed by analysis of worst case scenarios. I developed analysis methods using indexes to represent the total reservoir change calculated using the total parameter mass (i.e., algae, dissolved oxygen, total dissolved solids) normalized by the reservoir volume to eliminate apparent mass changes due to volume changes. These indexes have units of average concentrations, but are better thought of as a global reservoir index or normalized concentration. These indexes allow analysis of the total reservoir and not just specific zones. Total normalized algal concentrations were impacted more by changes in nutrient inflows (land use) in both reservoirs than to changes in TAIR and Q. For Deer Creek, PO4-P changes significantly increased normalized algal concentrations in the reservoir and in dam releases when PO4-P inflow was increased by 50%. Aguamilpa was more sensitive to NO3-NO2-N changes, exhibiting significant increases in normalized algal concentration for the +50% NO3-NO2-N simulation. Both reservoirs showed small changes to normalized algal concentration for the +3ºC TAIR simulation with the largest changes occurring during warm seasons. However, Deer Creek exhibited decreased total algal levels when TAIR was increased by 3ºC while Aguamilpa showed increased total algal levels with the 3ºC increase in TAIR. These contrasting trends, a decrease in Deer Creek and an increase in Aguamilpa, were produced by algae succession processes. Changes in Q affected normalized algal concentration in both reservoirs in different ways. In Aguamilpa, total algal levels increased under dry conditions while Deer Creek showed little general change associated with flow changes. Worst case scenario simulations, which included changing more than one parameter, showed that GCC changes can cause large impacts if they occur simultaneously with high nutrient loadings. These results begin to show how GCC could impact reservoirs and how these impacts compare to potential impacts from land use change. The results show that both temperate and tropical reservoirs are impacted by GCC but are more sensitive to nutrients. The methods, plots, and tools developed in this study can assist water managers in evaluating and studying GCC and land use changes effects in reservoirs worldwide.
283

Management of Global Reservoir Sedimentation: Evaluating RESCON 2 for Sediment Management Alternatives

Garcia, Christopher Jacob 01 June 2019 (has links)
Reservoir sedimentation occurs as dams impound streams and rivers, preventing the delivery of sediments downstream. Globally, reservoirs lose approximately 40 million acre-ft of storage to sediments each year. Several methods for managing reservoir sedimentation have been developed to help extend project life. In 2017, the World Bank sponsored REServoir CONservation (RESCON) 2, a pre-feasibility program aimed to help users select sediment management practices to consider for more detailed studies.There are two main objectives to this research: 1) perform a sensitivity analysis to understand which parameters require greater precision and which can be roughly approximated, and 2) evaluate RESCON 2 suggested practices to assess the model's accuracy and consistency for providing the optimal solution. Comparisons of the actual sediment management practice will be made with RESCON's results and applicable zones from the Sediment Management Options Diagram (SMOD). Brief descriptions of the SMOD and RESCON 2 will be provided. RESCON-required inputs will be summarized, and some key entries will be presented. Additionally, innovations taken in Japan to modify and retrofit exiting reservoirs with sediment management capabilities will be explored.The sensitivity analysis proves the unit benefit of reservoir yield parameter to be highly sensitive, and users should invest time into determining this value. The sensitivity analysis also illustrates certain processes in RESCON, such as automatically determining the implementation schedule of flushing or a sustainable solution for dredging operations, have great influence over the respective method's analysis. Approximations can be used if these options were selected.Twenty reservoirs from around the world were modeled in RESCON 2, with storage capacities ranging between 152 acre-ft and 31.9 million acre-ft. All sediment management alternatives whose NPV lied within 30% of the highest alternative were deemed practicable for the reservoir. Of the twenty models analyzed in RESCON 2, ten did not practice sediment management. Analyzing only those reservoirs where sediment management is being employed, RESCON predicted the correct or used practice eight out of ten times.Recommendations to improve RESCON include 1) an HSRS operations and maintenance parameter, 2) expanding the unit benefit of reservoir yield parameter into several terms to more explicitly state applicable revenue sources, and 3) creating a list of RESCON model builds, updates, and bug treatments and an option for users to report bugs or other problems.
284

The fisheries of Deer Creek Reservoir, Utah, with special emphasis on the yellow perch (perca flavescens Mitchill)

Lewellen, Gale R. 01 May 1969 (has links)
This thesis is concerned with the fisheries of Deer Creek Reservoir, Wasatch County, Utah, with special emphasis on the yellow perch. The study period was from May 13 to November 24, 1968. Objectives included the determination of size, age, and food habits of the yellow perch. Parasitic occurrences in the perch population by Ligula intestinalis were also recorded as well as the utilization of the perch by the fishermen. Observations on other species of fish including an analysis of rainbow trout stocking programs were also objectives of this thesis. Data was gathered by means of creel census and fish collection techniques. Collections were made by use of seine, hook and line, shocking and experimental gill nets.
285

Sustainable Reservoir Management Approaches under Impacts of Climate Change - A Case Study of Mangla Reservoir, Pakistan

Khan, Muhammad Adnan 16 November 2023 (has links)
Reservoir sedimentation is a major issue for water resource management around the world. It has serious economic, environmental, and social consequences, such as reduced water storage capacity, increased flooding risk, decreased hydropower generation, and deteriorated water quality. Increased rainfall intensity, higher temperatures, and more extreme weather events due to climate change are expected to exacerbate the problem of reservoir sedimentation. As a result, sedimentation must be managed to ensure the long-term viability of reservoirs and their associated infrastructure. Effective reservoir sedimentation management in the face of climate change necessitates an understanding of the sedimentation process and the factors that influence it, such as land use practices, erosion, and climate. Monitoring and modelling sedimentation rates are also useful tools for forecasting future impacts and making management decisions. The goal of this research is to create long-term reservoir management strategies in the face of climate change by simulating the effects of various reservoir-operating strategies on reservoir sedimentation and sediment delta movement at Mangla Reservoir in Pakistan (the second-largest dam in the country). In order to assess the impact of the Mangla Reservoir's sedimentation and reservoir life, a framework was developed. This framework incorporates both hydrological and morphodynamic models and various soft computing models. In addition to taking climate change uncertainty into consideration, the proposed framework also incorporates sediment source, sediment delivery, and reservoir morphology changes. Furthermore, the purpose of this study is to provide a practical methodology based on the limited data available. In the first phase of this study, it was investigated how to accurately quantify the missing suspended sediment load (SSL) data in rivers by utilizing various techniques, such as sediment rating curves (SRC) and soft computing models (SCMs), including local linear regression (LLR), artificial neural networks (ANN) and wavelet-cum-ANN (WANN). Further, the Gamma and M-test were performed to select the best-input variables and appropriate data length for SCMs development. Based on an evaluation of the outcomes of all leading models for SSL estimation, it can be concluded that SCMs are more effective than SRC approaches. Additionally, the results also indicated that the WANN model was the most accurate model for reconstructing the SSL time series because it is capable of identifying the salient characteristics in a data series. The second phase of this study examined the feasibility of using four satellite precipitation datasets (SPDs) which included GPM, PERSIANN_CDR, CHIRPS, and CMORPH to predict streamflow and sediment loads (SL) within a poorly gauged mountainous catchment, by employing the SWAT hydrological model as well as SWAT coupled soft computing models (SCMs) such as artificial neural networks (SWAT-ANN), random forests (SWAT-RF), and support vector regression (SWAT-SVR). SCMs were developed using the outputs of un-calibrated SWAT hydrological models to improve the predictions. The results indicate that during the entire simulation, the GPM shows the best performance in both schemes, while PERSIAN_CDR and CHIRPS also perform well, whereas CMORPH predicts streamflow for the Upper Jhelum River Basin (UJRB) with relatively poor performance. Among the best GPM-based models, SWAT-RF offered the best performance to simulate the entire streamflow, while SWAT-ANN excelled at simulating the SL. Hence, hydrological coupled SCMs based on SPDs could be an effective technique for simulating streamflow and SL, particularly in complex terrain where gauge network density is low or uneven. The third and last phase of this study investigated the impact of different reservoir operating strategies on Mangla reservoir sedimentation using a 1D sediment transport model. To improve the accuracy of the model, more accurate boundary conditions for flow and sediment load were incorporated into the numerical model (derived from the first and second phases of this study) so that the successive morphodynamic model could precisely predict bed level changes under given climate conditions. Further, in order to assess the long-term effect of a changing climate, a Global Climate Model (GCM) under Representative Concentration Pathways (RCP) scenarios 4.5 and 8.5 for the 21st century is used. The long-term modelling results showed that a gradual increase in the reservoir minimum operating level (MOL) slows down the delta movement rate and the bed level close to the dam. However, it may compromise the downstream irrigation demand during periods of high water demand. The findings may help the reservoir managers to improve the reservoir operation rules and ultimately support the objective of sustainable reservoir use for societal benefit. In summary, this study provides comprehensive insights into reservoir sedimentation phenomena and recommends an operational strategy that is both feasible and sustainable over the long term under the impact of climate change, especially in cases where a lack of data exists. Basically, it is very important to improve the accuracy of sediment load estimates, which are essential in the design and operation of reservoir structures and operating plans in response to incoming sediment loads, ensuring accurate reservoir lifespan predictions. Furthermore, the production of highly accurate streamflow forecasts, particularly when on-site data is limited, is important and can be achieved by the use of satellite-based precipitation data in conjunction with hydrological and soft computing models. Ultimately, the use of soft computing methods produces significantly improved input data for sediment load and discharge, enabling the application of one-dimensional hydro-morphodynamic numerical models to evaluate sediment dynamics and reservoir useful life under the influence of climate change at various operating conditions in a way that is adequate for evaluating sediment dynamics.:Chapter 1: Introduction Chapter 2:Reconstruction of Sediment Load Data in Rivers Chapter 3:Assessment of The Hydrological and Coupled Soft Computing Models, Based on Different Satellite Precipitation Datasets, To Simulate Streamflow and Sediment Load in A Mountainous Catchment Chapter 4:Simulating the Impact of Climate Change with Different Reservoir Operating Strategies on Sedimentation of the Mangla Reservoir, Northern Pakistan Chapter 5:Conclusions and Recommendations
286

A Chemical, Physical, and Biological Investigation of the Total Suspended and Dissolved Substances in Lake Dallas with Emphasis on Sanitation

Eads, Ewin A. 06 1900 (has links)
The purpose of this investigation is to determine the suspended organic matter and the total phosphorus in the waters of Lake Dallas and to evaluate these findings. Since organic matter floating in lakes is largely composed of minute plants, animals, and detritus derived from animals and plants, the fertilizing effect of phosphorus must be considered as an integral part of this problem.
287

Evaluation of the Chlorophyll/Fluorescence Sensor of the YSI Multiprobe: Comparison to an Acetone Extraction Procedure

Lambert, Patricia 05 1900 (has links)
The purpose of this study was to examine the suitability of the YSI model 6600 Environmental Monitoring System (multiprobe) for long term deployment at a site in Lewisville Lake, Texas. Specifically, agreement between a laboratory extraction procedure and the multiprobe chlorophyll/fluorescence readings was examined. Preliminary studies involved determining the best method for disrupting algal cells prior to analysis and examining the precision and linearity of the acetone extraction procedure. Cell disruption by mortar and pestle grinding was preferable to bath sonication. Comparison of the chlorophyll/fluorescence readings from the multiprobe and the extraction procedure indicated that they were significantly correlated but temperature dependent.
288

Assessing the Spatial and Temporal Distribution of MTBE and BTEX Compounds in Lake Lewisville, Texas February 1999 - February 2000

Lee, Anne W. 08 1900 (has links)
The spatial and temporal distribution of Methyl Tertiary-Butyl Ether (MTBE) and BTEX (Benzene, Toluene, Ethylbenzene, Xylenes) compounds were assessed in a multipurpose reservoir, Lake Lewisville, Texas between February 1999 and February 2000. Concentrations of MTBE ranged from 0.0 - 16.7 mg/L. Levels of MTBE in the lake were related to watercraft. BTEX concentrations were never detected above 2.0 mg/L during the sampling period. Finished drinking water from Denton and the Upper Trinity Regional Water District (UTRWD) Treatment Plants were also tested for MTBE and BTEX. MTBE and BTEX were not detected in UTRWD water samples. Denton's finished water samples never exceeded 2.2 mg/L for MTBE and BTEX was not detected except for one replicate of 1.1 mg/L toluene.
289

Applications of hydrodynamic and water quality models to the Sau and Boadella Reservoirs

Takkouk, Saddek 06 May 2011 (has links)
Applicaciò d'un model de hydrodinàmica i de qualitat de l'aigua als embassaments de Sau i Boadella / The aim of this work is to have an idea about the behaviour of Sau and Boedella reservoirs in term of hydrodynamic and water quality, the models applied for are Dynamic simulation model DYRESM and water quality model CAEDYM. / En la tesi s'ha aplicat el model de qualitat de l'aigua DYREM-CAEDYM als embassaments de Sau i Boadella. Els models de qualitat de l'aigua són capaços de predir l'evolució física, química i biològica dels embassaments. Un cop inicialitzats i calibrats ens poden donar informació de com evolucionarà, per exemple, el fòsfor dissolt i les poblacions d'algues. Per funcionar, aquests models necessiten nodrir-se diàriament amb dades meteorològiques com ara la radiació solar, la velocitat del vent o les precipitacions, les quals es poden obtenir d'estacions meteorològiques properes als embassaments. També calen dades biològiques que han estat facilitades per diferents persones i organismes com el Departament d'Ecologia de la Universitat de Barcelona i l'Agència Catalana de l'Aigua. Aquests models no són fàcils de manejar i el primer que s'ha de fer és estudiar-ne la seva aplicabilitat. Concretament, cal saber si poden ser d'una dimensió o en cal un nombre superior. Això es fa comprovant l'evolució de diferents nombres adimensionals, com per exemple els de Wedderburn i Burger. Un cop calibrat, el model DYRESM-CAEDYM prediu -molt bé- l'evolució de la temperatura i -bastant bé- la de l'oxigen dissolt, sobretot a l'embassament de Sau,indicant la presència de zones anòxiques al fons. La tendència en l'evolució del fòsfor dissolt també s'hi veu ben reflectida. En canvi, les simulacions de la clorofila-a, indicativa de les algues, no són tan acurades ja que depenen de molt factors, alguns dels quals no queden prou reflectits en el model. L'objectiu final de la tesi és poder millorar la gestió dels embasaments indicant, per exemple, quina és la fondària òptima d'extracció de l'aigua.
290

A Preliminary Study On The Use Of Reservoir Simulation And Coal Mine Ventilation Methane Measurements In Determining Coal Reservoir Properties

Erdogan, Sinem Setenay 01 February 2011 (has links) (PDF)
This thesis investigates methane emissions and methane production potentials from abandoned longwall panels produced or emitted due to mining activities either from coal seam or any underlying or overlying formations. These emissions can increase greenhouse gas concentrations and also pose a danger to the underground working environment and to miners. In addition to the safety issues, recovery and utilization of this gas is an additional source of energy. In this study, methane concentrations measured from ventilation air ways in Yeni &Ccedil / eltek Coal Mine, which is located in Suluova basin, Amasya, and contains thick, laterally extensive Lower Eocene coal seams, were integrated within a numerical vi reservoir model. Key reservoir parameters for history matching are cleat permeabilities, cleat porosity, diffusion time and Langmuir volume and Langmuir pressure. Thirteen cases were studied. According to the results, Case-10 determined as the best fitted case for both of the production wells. Cleat permeabilities and Langmuir pressure were the most effective parameters. Reservoir parameters matched are cleat permeabilities of 5, 4 and 1 md and fracture dimensions of 0.8, 0.4, and 0.1 m in x, y and z direction respectively, 2 % cleat porosity, 0.3 % water saturation. Diffusion time was determined as 400 days and 2000 kPa Langmuir volume and 6.24279 m3 /tone gas content estimated. According to these results it can be said that methane production will not be economically feasible, however / to remedy underground working conditions and safety of workers methane management should be taken into consideration.

Page generated in 0.0578 seconds