• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 13
  • 10
  • 2
  • 1
  • 1
  • Tagged with
  • 53
  • 53
  • 53
  • 14
  • 14
  • 14
  • 12
  • 11
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Liquid Residence Time Distribution in Micro-reactors with Complex Geometries

Hopley, Alexandra January 2018 (has links)
Micro-reactors, enabling continuous processes at small scales, have been of growing interest due to their advantage over batch. These advantages include better scaling, as well as improved mass and heat transfer, though many new challenges arise due to the small scales involved such as non-negligible entrance effects and significant pressure drops. The flow in coils, rectangular channel serpentine plates, mix-and-reside plates, and complex liquid-liquid mixing plates was investigated and characterized using residence time distribution (RTD) tests. A pulse test was used to determine the RTD curve shape of these reactors at flowrates ranging from 20 to 100 g/min. A semi-empirical, multi-parameter model was used to describe the asymmetrical curves, while the axial dispersion model was used to describe the symmetrical ones. The Peclet number is given in function of the Reynolds number for the liquid-liquid plates that were found to be near-plug flow (Pe > 100). In a continuous mixing plate, the Pe ranged from 190 to 475 with Pe increasing as Re increased. The effect of straight channel sections in micro-reactors is also evaluated. Longer straight segments between micromixers resulted in the development of unidirectional flow and the occurrence of tailing in the RTD. Finally, the suitability of a liquid-liquid plate for a reactive liquid-solid system is evaluated. The plugging is determined visually and by measuring pressure increase; pressure started to increase after 5 minutes and the experiment had to be halted after 10 minutes due to plugging. Parallels between the particle size distribution and the residence time distribution curves are drawn. The particle size distribution of silver chloride at low flow rates is much wider than at high flowrates. The average particle size at high flowrates was also much lower (≈69nm) than at low flowrates (≈112nm).
2

Redesign of Industrial Column Flotation Circuits Based on a Simple Residence Time Distribution Model

Kennedy, Dennis Lee 25 November 2008 (has links)
The potential for improved selectivity has made column flotation cells a popular choice for upgrading fine coal. Unfortunately, recent production data from full-scale column plants indicate that many industrial installations have failed to meet original expectations in terms of clean coal recovery. Theoretical studies performed using a simple dispersion model showed that this inherent shortcoming could be largely minimized by reconfiguring the columns to operate in series as a cell-to-cell circuit. Follow-up field data showed that this low-cost modification increased flotation recovery as predicted by the dispersion model. This study presents the key findings obtained from the field investigation and provides generic guidelines for designing multi-stage column circuits. / Master of Science
3

Interpreting Residence Time Distributions in Water Treatment Systems

Jansons, Ketah Unknown Date (has links)
This thesis establishes residence time distribution (RTD) as a key tool for the investigation of water treatment systems. RTD software for tracer data modelling and interpretation is developed and validated for problem solving purposes in water treatment systems. The technique focuses on the systematic interpretation of RTD data using a tanks-in-series based model and an indicator, flushing time (tf ). This approach removes the subjectivity often associated with RTD interpretation and is tested extensively using experimental and numerical data. The influence of design elements, intended to enhance hydraulic efficiency, is also addressed. For this purpose, both numerical modelling (Mike 21) and the proposed approach are employed. Results reveal that the interpretive provides valuable information, facilitating a greater understanding of the hydraulic effects of changes to geometry and inlet/outlet configuration than other techniques alone. The approach was shown to be particularly successful at interpreting RTD curves from stormwater treatment systems due to their susceptibility to stagnation. However, it was shown to have limited applicability in systems with complex flow characteristics (such as large bioreactor vessels) or those susceptible to extensive short-circuiting. The approach was also found to be unsuitable for evaluating the impact of deviations from ideal flow on pollutant removal in systems governed by complex biokinetic reactions.
4

Mixing In Jet-Stirred Reactors With Different Geometries

Ayass, Wassim W. 12 1900 (has links)
This work offers a well-developed understanding of the mixing process inside Jet- Stirred Reactors (JSR’s) with different geometries. Due to the difficulty of manufacturing these JSR’s made in quartz, existing JSR configurations were assessed with certain modifications and optimal operating conditions were suggested for each reactor. The effect of changing the reactor volume, the nozzle diameter and shape on mixing were both studied. Two nozzle geometries were examined in this study, a crossed shape nozzle and an inclined shape nozzle. Overall, six reactor configurations were assessed by conducting tracer experiments - using the state-of-art technologies of high-speed cameras and laser absorption spectroscopy- and Computational Fluid Dynamics (CFD) simulations. The high-speed camera tracer experiment gives unique qualitative information – not present in the literature – about the actual flow field. On the other hand, when using the laser technique, a more quantitative analysis emerges with determining the experimental residence time distribution (RTD) curves of each reactor. Comparing these RTD curves with the ideal curve helped in eliminating two cases. Finally, the CFD simulations predict the RTD curves as well as the mixing levels of the JSR’s operated at different residence times. All of these performed studies suggested the use of an inclined nozzle configuration with a reactor diameter D of 40mm and a nozzle diameter d of 1mm as the optimal choice for low residence time operation. However, for higher residence times, the crossed configuration reactor with D=56mm and d=0.3mm gave a nearly perfect behavior.
5

The Simulation and Analysis of Particle Flow Through an Aggregate Stockpile

Parker, Brian Mark 17 December 2009 (has links)
For many aggregate mining facilities, the stockpile is the preferred method of storing rock. In many aggregate mines, as well as other mines using stockpiling techniques, understanding the timing and flow of particles through a stockpile is important for correctly timing samples, making proper process adjustments and overall stockpile safety. Because much of the research of today lacks important information regarding actual interior particle movement within a stockpile, a series of Real Time Distribution (RTD) analyses and stockpile flow models have been prepared and analyzed for this study in order to better understand the flow characteristics of a stockpile. A series of three RTD analyses performed on three separate stockpiles provides information leading to the assumption that stockpiles tend to operate similar to a plug flow system. While conveyor loading techniques may lead to separation of rocks prior to traveling through the stockpile, the majority of the rock particles entering the pile remain near the point of entry, or within the "action" area, and will travel through the pile in a plug flow, rather than a mixed flow, manner. High Peclet number results for each analysis prove this assumption to be accurate. A series of models on three separate stockpiles have been created using PFC3d. Mainly, the simulations prove PFC3d is capable of showing how stockpile particles move in three dimensions while monitoring specific particles within the pile. In addition, these models provide simulation results similar to the results obtained within the RTD analyses. Results show that particles located directly above the discharge point, or "action" area, travel through the pile at a faster rate than particles surrounding this area. Velocity results obtained from the simulations show particles accelerating as they get closer to the discharge points while also providing evidence of "arching" during the simulation process. These findings provide a better understanding of internal flow within the stockpile and ways to possibly predict future stockpile flow issues that may be encountered. / Master of Science
6

Etude du couplage hydrodynamique/adsorption : application au lit mobile simulé / Study of the coupling of hydrodynamics and adsorption : application to simulated moving bed processes

Fangueiro Gomes, Leonel 06 November 2015 (has links)
Modèle monodimensionnel de type Piston-Dispersion. Le terme de dispersion axiale englobe alors toutes les imperfections de l'écoulement : injection des fluides non homogène dans l’espace et étalée dans le temps, effet de parois, et enfin volumes morts derrière les obstacles noyés dans le tamis (poutres, conduites...) dans le cas des Lits Mobiles Simulés. Cette représentation, quoique très simpliste, s'avère généralement suffisante tant que l’étalement des fronts de concentration est d'abord induit par les limitations au transfert externe, interne (macro/microporeux) et par la thermodynamique du système. Par contre, lorsque l’adsorbant employé présente d’excellentes performances de transfert, une approche aussi simple s'avère extrêmement risquée. En effet, les phénomènes dispersifs associés à l’adsorbant (transfert et thermodynamique) et à l’hydrodynamique ont des contributions de même ordre de grandeur sur la dispersion des fronts de concentration. Dans ce cas, une description plus réaliste de l'écoulement est requise afin de mieux appréhender son effet sur les performances de séparation.Dans ce contexte, l’objectif de ce projet de thèse est de mettre en place une méthodologie pour prendre en compte ces phénomènes hydrodynamiques lors de l’extrapolation d’un procédé de séparation par adsorption. Pour cela, nous proposons une étude du couplage entre les phénomènes hydrodynamiques et le phénomène d’adsorption. / Hydrodynamics inside industrial Simulated Moving Bed (SMB) adsorption columns can be complex due to the presence of internal distribution devices, free flow chambers and heterogeneous injections. These have to be taken into account in SMB numerical models to scale-up purposes. In the present thesis, a CFD approach is adopted as an intermediate step to develop a 1D model simple enough to be used for cyclic SMB simulations while being able to represent realistic hydrodynamics. This model results from the interpretation of the moments of the fluid age distribution, transported by CFD according to the method developed by Liu and Tilton (2010) that allows to estimate the degree of mixing (Liu, 2011) of the adsorption columns. The resulting 1D model consists in the two examples provided by Zwietering (1959) of a completely segregated system and a maximum mixedness system. This model is able to reproduce the residence time distribution of the CFD model of an adsorption column, while being representative of the internal flow patterns. This results in a good representation of the coupling of adsorption and hydrodynamics by the 1D model. When integrated in a SMB simulator and compared to the traditionally used dispersed plug flow model, the new 1D model demonstrates that for most of the adsorption column geometries considered a detailed hydrodynamic description is mandatory. Such detailed hydrodynamic description is even more important when employing adsorbents with better mass transfer performances than those currently used for the p-xylene purification, which is expected in the upcoming years.
7

Distribuição do tempo de residência em processo de pasteurização com trocador de calor a placas. / Residence time distribution in a pasteurization process with plate heat exchanger.

Cavero Gutierrez, Carola Gean Carla 27 March 2008 (has links)
É apresentado um estudo de distribuição do tempo de residência nas etapas de um processo de pasteurização contínuo por trocador de calor a placas (aquecimento, resfriamento, regeneração e retenção). Para o estudo experimental, foi adotada a técnica condutimétrica usando cloreto de sódio em solução aquosa como traçador. Foram verificadas as influências da vazão, da configuração do trocador de calor a placas (número de passes para o arranjo em série) e do tipo de tubo de retenção (tubo em \"S\" e tubo helicoidal). Modelos de distribuição foram usados para representar o comportamento experimental (dispersão axial, tanques em série, laminar modificado, combinado PFR+CSTR). Este estudo foi aplicado para as condições de pasteurização HTST de leite, visando a futura implementação de uma modelagem matemática rigorosa do processo, para otimização do projeto e operação do processo. / It is presented a study of residence time distribution in the steps of a process of continuous pasteurization by plate heat exchanger (heating, cooling, regeneration and holding). For the experimental study, it was adopted a conductimetric technique using sodium chloride in aqueous solution as a tracer. It was also studied the influence of the flow rate, the configuration of the plate heat exchanger (number of passes in series arrangement) and the type of holding tube (\"S\"- shaped tube and helicoidal tube). Distribution models were used for representing the experimental behavior (axial dispersion, tank in series, modified laminar, combined PFR+CSTR). This study was applied for the conditions of HTST pasteurization of milk, targeting the future implementation of a rigorous mathematical modeling of the process, which can be applied for the process operation and optimization of the project design.
8

Distribuição do tempo de residência e letalidade no processamento térmico contínuo de líquidos com escoamento laminar não ideal em trocadores bitubulares. / Residence time distribution and lethality in the continuous thermal processing of liquids with non ideal laminar flow in bitubular exchangers.

Pegoraro, Paula Rossato 02 March 2012 (has links)
Os trocadores de calor tubulares são muito utilizados para o processamento térmico de alimentos líquidos viscosos por possuírem um maior diâmetro hidráulico em comparação aos trocadores de calor a placas. O cálculo da letalidade neste tipo de trocador está diretamente relacionado ao perfil de velocidade e à distribuição do tempo de residência (DTR). Para escoamento laminar de fluidos viscosos, Newtonianos e não-Newtonianos, geralmente adota-se um perfil de velocidade laminar e de lei de potência, respectivamente. No entanto, algumas características do equipamento como irregularidades na tubulação, a corrugação do tubo ou as curvas podem modificar o perfil de velocidade ideal. Esse desvio da idealidade pode ser caracterizado através da determinação experimental da distribuição do tempo de residência do processo. Este trabalho teve como objetivo a determinação experimental da DTR de fluidos viscosos em um equipamento bitubular de processamento térmico e o ajuste do perfil de velocidade associado. Modelos clássicos de DTR foram ajustados aos dados, assim como foram propostos e testados novos modelos generalizados de DTR, a fim de caracterizar o escoamento laminar não ideal em tubos. A determinação da DTR experimental foi realizada para vazões entre 10 e 50 L/h utilizando água, solução de carboximeticelulose 1,0% (pseudoplástico) e mistura glicerina/água 80%. Os dados de DTR foram obtidos através de duas técnicas: condutimétrica e colorimétrica. A primeira técnica baseia-se na injeção de solução saturada de cloreto de sódio e detecção online por um condutivímetro, porém, não apresentou resultados satisfatórios mostrando que o método não é adequado para fluidos viscosos. Já a segunda técnica utilizada se baseia na injeção de corante e posterior detecção em espectrofotômetro. Os modelos que melhor se ajustaram aos dados experimentais para os três fluidos estudados foram os modelos generalizados y-laminar e exponencial. A letalidade foi calculada a partir da distribuição de temperatura no trocador de calor em estado estacionário e do tempo médio de residência obtido experimentalmente e permitiu detectar o sobreprocessamento no processo estudado. / Tubular heat exchangers are widely used for thermal processing of viscous liquid foods because they have larger hydraulic diameters than the plate heat exchangers. The calculation of lethality in this type of exchanger is directly related to velocity profile and the residence time distribution (RTD). For the laminar flow of viscous fluids, Newtonian and non-Newtonian, generally laminar and power law velocity profiles are used, respectively. However, some features of the equipment as irregularities in the pipe, the corrugation of the pipe or the presence of curves can change the ideal velocity profile. This ideality deviation can be characterized through the experimental determination of the residence time distribution of the process. The aim of this work was the experimental determination of the RTD of a viscous fluid in a bitubular thermal processing equipment and the determination of the associated velocity profile. Classic models of RTD were fitted to the data, as well as were proposed and tested new generalized models of RTD, in order to characterize the non ideal laminar flow in tubes. The experimental determination of RTD was performed to volumetric flow rates between 10 and 50 L/h using water, carboximeticelulose solution 1,0% (pseudoplastic) and glycerin/water mixture 80%. The RTD data were obtained through two techniques: conductimetric and colorimetric. The first technique is based on injection of saturated solution of sodium chloride and online detection with a conductivimeter however, unsatisfactory results showed that the method was not suitable for viscous fluids. The second technique is based on the injection of dye and subsequent detection with a spectrophotometer. The best fitted models to the experimental data for the three studied fluids were: ylaminar and exponential generalized models. The lethality was calculated from the temperature distribution in the heat exchanger at steady state and average residence time obtained experimentally and allowed the evaluation of the overprocessing of this process.
9

Estudo da distribuição do tempo de residência em um processo de pasteurização assistido por micro-ondas. / Study of the residence time distribution in a pasteurization process assisted by microwaves.

Fortes, Nilo Henrique Meira 22 August 2018 (has links)
O processo de pasteurização tem como objetivo garantir a segurança e qualidade nutricional do alimento e aumentar sua vida de prateleira. O conhecimento da distribuição do tempo de residência (DTR) do alimento em cada etapa do processo contínuo é importante para uma avaliação adequada do processo e das alterações que causa no alimento. Este trabalho tem como objetivo estudar a DTR em um processo de pasteurização contínuo assistido por micro-ondas aplicado a alimentos líquidos e propor modelos de escoamento para representá-la. Para isso, foram realizados experimentos de estímulo-resposta com alimentação tipo pulso por técnica condutimétrica utilizando uma solução saturada de NaCl como traçador. Com isso, foram obtidas as curvas de DTR do sistema completo, dos trocadores de calor das seções de pré-aquecimento e resfriamento, de seis tubos de retenção com diferentes diâmetros e comprimentos (volumes entre 40 e 125 mL) e do sistema de aquisição de dados de condutividade elétrica. Os experimentos foram realizados em quatro vazões volumétricas (0,5, 0,7, 0,9 e 1,1 L/min), a temperatura ambiente (19 a 26 °C) e como fluido de trabalho foi utilizada uma corrente de alimentação de água com concentração 0,5 g/L de NaCl para estabilizar a leitura de condutividade elétrica. Foram realizadas três repetições por vazão para o processo completo, trocadores de calor e tubos de retenção, e cinco repetições por vazão para o sistema de aquisição de dados, dada a maior sensibilidade. Observou-se a necessidade de realizar o procedimento de convolução numérica para avaliar a distorção na curva de DTR do processo causada pelo escoamento na célula do sistema de aquisição de dados. Foram testados cinco modelos de escoamento: dispersão axial, compartimentado PFR+CSTR, tanques em série, convecção generalizada e y-laminar. O critério de ajuste dos modelos foi a minimização do erro quadrático entre valores experimentais e calculados da curva E(t). Os modelos de dispersão axial e y-laminar foram o que apresentaram melhor ajuste para os tubos de retenção e o modelo de convecção generalizada apresentou melhor ajuste para os trocadores de calor. O regime de escoamento durante os experimentos variou entre laminar e de transição (valores de Reynolds entre 1259 e 4238). Os resultados para o sistema completo e trocadores de calor foram satisfatórios, para os tubos de retenção foi observada uma grande incerteza nos valores dos parâmetros e foi observada a importância da convolução numérica em sistemas de pequeno volume. / Pasteurization process aims to ensure the safety and nutritional quality of the food and increase its shelf life. The knowledge of residence time distribution (RTD) of the food in each step of continuous processes is important to evaluate the process and changes that it causes in foods. This work aims to study the RTD in a continuous pasteurization process assisted by microwave applied to liquid foods and propose flow models to represent it. For this reason, stimulus-response experiments by pulse injection were conducted by conductimetric technique using a saturated solution of NaCl as a tracer. Thus, it was obtained the RTD of the complete process, heat exchangers of preheating section and cooling section, six retention tubes with different diameters and lengths (volumes between 40 and 125 mL) and of the electrical conductivity data acquisition system. The experiments were carried out at four volumetric flow rates (0.5, 0.7, 0.9 and 1.1 L/min), at room temperature (19 to 26 °C) and water with 0.5 g/L of NaCl was used as the work fluid to stabilize the electrical conductivity reading. Three repetitions per volumetric flow rate were performed for the complete process, heat exchangers and holding tubes, and five repetitions per volumetric flow rate were performed for the data acquisition system, given the higher sensibility. It was observed the need to apply the numerical convolution procedure to evaluate the distortion in the RTD curve of the process caused by the flow through the data acquisition system. Five flow models were tested: axial dispersion, PFR+CSTR association, tanks in series, generalized convection and y-laminar. The adjustment criterion of the parameters was the minimization of the quadratic error between experimental and calculated E(t) values. The axial dispersion and y-laminar models provided the best adjustments for the holding tubes and the generalized convection model provided the best adjustment for the heat exchangers. The flow regime during the experiments varied between laminar and transition (Reynolds values between 1259 and 4238). The results for the complete system and heat exchangers were satisfactory, for the holding tubes was observed a great uncertainty in the parameters values and was observed the importance of numerical convolution in small volume systems.
10

Design and analysis of a photocatalytic bubble column reactor

Cox, Shane Joseph, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
The current work has developed a CFD model to characterise a pseudo-annular photocatalytic bubble column reactor. The model development was divided into three stages. Firstly, hydrodynamic assessment of the multiphase fluid flow in the vessel, which incorporated residence time distribution analysis both numerically and experimentally for validation purposes. Secondly, the radiation distribution of the UV source was completed. The final stage incorporated the kinetics for the degradation the model pollutant, sodium oxalate. The hydrodynamics were modelled using an Eulerian-Eulerian approach to the multiphase system with the standard k- turbulence model. This research established that there was significant deviation in the fluid behaviour in the pseudo-annular reactor when compared with traditional cylindrical columns due to the nature of the internal structure. The residence time distribution study showed almost completely mixed flow in the liquid phase, whereas the gas phase more closely represented plug flow behaviour. Whilst there was significant dependence on the superficial gas flow rate the mixing behaviour demonstrated negligible dependence on the liquid superficial velocity or the liquid flow direction, either co- or counter- current with respect to the gas phase. The light distribution was modelled using a conservative variant of the Discrete Ordinate method. The model examined the contribution to the incident radiation within the reactor of both the gas bubbles and titanium dioxide particles. This work has established the importance of the gas phase in evaluating the light distribution and showed that it should be included when examining the light distribution in a gas-liquid-solid three-phase system. An optimal catalyst loading for the vessel was established to be 1g/L. Integration of the kinetics of sodium oxalate degradation was the final step is developing the complete CFD model. Species transport equations were employed to describe the distribution of pollutant concentration within the vessel. Using a response surface methodology it was shown that the reaction rate exhibited a greater dependency on the lamp power that the lamp length, however, the converse was true with the quantum efficiency. This work highlights the complexity of completely modelling a photocatalytic system and has demonstrated the applicability of CFD for this purpose.

Page generated in 0.2237 seconds