• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Micro-modeling and study of the impact of microstructure on the performance of solid oxide fuel cell electrodes

Abbaspour Gharamaleki, Ali 11 1900 (has links)
As the demand for green energy and fuel cells grows, more attention is drawn towards Solid Oxide Fuel Cells (SOFCs). Random and complex structure of composite electrodes and underlying electrochemical process has not been completely unveiled yet and further study is required to acquire more understanding. Modeling in this regard plays an important role as it pinpoints key parameters in optimum design of the cell without resorting to costly and uncertain experiments which might even lead to misinterpretations due to random nature of experimental data. The aim of this work is to develop a new rigorous model to study the structure performance relationship of (SOFC) composite electrodes. The work has been conducted in two phases, a two-dimensional continuous approach and three-dimensional discrete model. A new two-dimensional, geometrical model which captures the inhomogeneous nature of the location of electrochemical reactions based on random packing of electronic and ionic conducting particles has been developed. The results show that the concentration of oxygen inside the cathode in the two-dimensional model is not only a function of the electrode depth but also changes along the width of the electrode. Furthermore the effect of composition of the electrode on the length of three phase boundary (TPB) and total polarization resistance has been demonstrated. A parametric study of the effect of the conductivity of ionic conductor and diffusion coefficient on the performance of the electrode has been given. To make a more realistic analysis, a three-dimensional reconstruction of (SOFC) composite electrodes was developed to evaluate the performance and further investigate the effect of microstructure on the performance of electrodes. To enhance connectivity between particles and increase the length of TPB, sintering process is mimicked by enlarging particles to certain degree. Geometrical characteristics such as length of TBP and active contact area as well as porosity can easily be calculated using the current model. Electrochemical process is simulated using resistor-network model and complete Butler-Volmer equation is used to deal with charge-transfer process on TBP. The model shows that TPBs are not uniformly distributed across the electrode and location of TPBs as well as amount of electrochemical reaction is not homogeneous. Effects of particle size, electrode thickness, particle size ratio, electron and ion conductor conductivities and rate of electrochemical reaction on overall electrochemical performance of electrode are investigated. / Chemical Engineering
2

Micro-modeling and study of the impact of microstructure on the performance of solid oxide fuel cell electrodes

Abbaspour Gharamaleki, Ali Unknown Date
No description available.
3

Simulação de condutividade alternada em sistemas poliméricos e aplicações em poliméricos condutivos / Simulation of alternated conductivity, in polymeric systems and applications in conductive polymers

Nagashima, Haroldo Naoyuki 20 March 2000 (has links)
Os processos envolvidos em condução eletrônica de polímeros condutores são muito complicados devido à intricada morfologia estrutural de tais materiais. Realizamos medidas de condutividade alternada em filmes de polianilina em uma grande faixa de freqüência, variando o grau de dopagem dos filmes e temperatura. Ao mesmo tempo, desenvolvemos um modelo estatístico de rede de resistores para descrever a estrutura polimérica e para simular as componentes real e imaginária de sua resistividade alternada. Leva-se em conta a polidispersividade do material, assim como os mecanismos de transportes de carga intracadeia e intercadeia. Pela aplicação de uma técnica de matriz de transferência, o modelo reproduz medidas de resistividade alternada realizadas em filmes de polianilina em diferentes graus de dopagem e em diferentes temperaturas. Nossos resultados indicam que os mecanismos intercadeias governam o comportamento da resistividade em regiões de baixa freqüência enquanto que, para altas freqüências, mecanismos intracadeia são dominantes. Essa simulação foi desenvolvida para redes bi e tridimensional. Aplicamos, também, esse método para estudar sistemas isoenergéticos de estrutura desordenada (poliacetileno estirado), sistemas isoenergéticos de estrutura desordenada (poliacetileno não-estirado) e sistemas não-isoenergéticos de estrutura desordenada (polianilina). Finalmente, uma comparação entre esses três materiais, permitiu-se discutir, em detalhes, a distribuição de barreiras de energia potencial e a diferença dos níveis de energia que controlam o mecanismo de salto dos portadores eletrônicos. / The processes involved in electronic conduction of conducting polymers are very complicated due to the intricate morphological structure of such materials. We carried out alternating conductivity measurements in polyaniline films in a large frequency range, varying the doping degree of the films and temperature. At the same time, we developed a statistical model of resistor networks to describe a polymer structure and to simulate the real and imaginary components of their ac resistivities. This model takes into account the polydispersiveness of the material as well as intrachain and interchain charge transport mechanisms. By the application of a transfer-matrix technique, it reproduces ac resistivity measurements carried out with polyaniline films in different doping degrees and temperatures. Our results indicate the interchain mechanisms govern the resistivity behavior in the low frequency region while, for higher frequencies, intrachain mechanisms are dominated. These simulations were developed in bi and tridimensional lattice. We also applied this method to study ordered structure in isoenergetic systems (stretched polyacetylene), disordered structure in isoenergetic systems (normal polyacetylene), and disordered structure in non-isoenergetic systems (polyaniline). Finally, a comparison between these three materials, allowed us to discuss in detail the energy barriers distribution and the difference in energy levels, which control the hopping mechanisms of the electronic carriers.
4

Simulação de condutividade alternada em sistemas poliméricos e aplicações em poliméricos condutivos / Simulation of alternated conductivity, in polymeric systems and applications in conductive polymers

Haroldo Naoyuki Nagashima 20 March 2000 (has links)
Os processos envolvidos em condução eletrônica de polímeros condutores são muito complicados devido à intricada morfologia estrutural de tais materiais. Realizamos medidas de condutividade alternada em filmes de polianilina em uma grande faixa de freqüência, variando o grau de dopagem dos filmes e temperatura. Ao mesmo tempo, desenvolvemos um modelo estatístico de rede de resistores para descrever a estrutura polimérica e para simular as componentes real e imaginária de sua resistividade alternada. Leva-se em conta a polidispersividade do material, assim como os mecanismos de transportes de carga intracadeia e intercadeia. Pela aplicação de uma técnica de matriz de transferência, o modelo reproduz medidas de resistividade alternada realizadas em filmes de polianilina em diferentes graus de dopagem e em diferentes temperaturas. Nossos resultados indicam que os mecanismos intercadeias governam o comportamento da resistividade em regiões de baixa freqüência enquanto que, para altas freqüências, mecanismos intracadeia são dominantes. Essa simulação foi desenvolvida para redes bi e tridimensional. Aplicamos, também, esse método para estudar sistemas isoenergéticos de estrutura desordenada (poliacetileno estirado), sistemas isoenergéticos de estrutura desordenada (poliacetileno não-estirado) e sistemas não-isoenergéticos de estrutura desordenada (polianilina). Finalmente, uma comparação entre esses três materiais, permitiu-se discutir, em detalhes, a distribuição de barreiras de energia potencial e a diferença dos níveis de energia que controlam o mecanismo de salto dos portadores eletrônicos. / The processes involved in electronic conduction of conducting polymers are very complicated due to the intricate morphological structure of such materials. We carried out alternating conductivity measurements in polyaniline films in a large frequency range, varying the doping degree of the films and temperature. At the same time, we developed a statistical model of resistor networks to describe a polymer structure and to simulate the real and imaginary components of their ac resistivities. This model takes into account the polydispersiveness of the material as well as intrachain and interchain charge transport mechanisms. By the application of a transfer-matrix technique, it reproduces ac resistivity measurements carried out with polyaniline films in different doping degrees and temperatures. Our results indicate the interchain mechanisms govern the resistivity behavior in the low frequency region while, for higher frequencies, intrachain mechanisms are dominated. These simulations were developed in bi and tridimensional lattice. We also applied this method to study ordered structure in isoenergetic systems (stretched polyacetylene), disordered structure in isoenergetic systems (normal polyacetylene), and disordered structure in non-isoenergetic systems (polyaniline). Finally, a comparison between these three materials, allowed us to discuss in detail the energy barriers distribution and the difference in energy levels, which control the hopping mechanisms of the electronic carriers.
5

A Novel Chip Resistor Spacecloth For Radar Absorbing Materials

Sudhendra, Chandrika 09 1900 (has links)
Spacecloth design and development is vital and crucial in Radar Absorbing Materials (RAM) for achieving Low Observability in an Aircraft or an Unmanned Air Vehicle(UAV). The RAM design translates into the spacecloth design. The spacecloths form the constituent layers in a broadband Jaumann absorber in which case they have to be designed for various values of surface resistivity. The design specifications of spacecloth(s) in RAMS is well understood and documented in literature. But the design of spacecloth hitherto, has been the domain of materials' scientists wherein the specified properties of the spacecloth are achieved by an iterative, trial and error process, by mixing various constituents in different proportions to get the design specified surface resistivity in the final end-product. In an effort to bridge this gap, a novel spacecloth for RAM applications is proposed in the thesis. It is proposed that a repetitive geometrical grid network of chip resistors simulates spacecloth. The sheet resistivity of the spacecloth is derived by analyzing various geometries like square, rectangle, triangle and hexagonal grids. The transmission and reflection loss for the chip resistor spacecloth is derived. The design of chip resistor spacecloths for operation at S and C bands is given followed by experimental verification using waveguide simulator experiments. Numerical study of multilayer RAM has been carried out with exponential taper variation of surface resistivities for constituent spacecloth layers and design curves are given for multilayer RAM both for normal and oblique incidence for TE and TM polarizations.
6

Computational and experimental studies of strain sensitive carbon nanotube films

Bu, Lei 08 December 2014 (has links) (PDF)
The excellent electrical and mechanical properties of carbon nanotubes (CNTs) provide interesting opportunities to realize new types of strain gauges. However, there are still challenges for the further development of CNT film strain gauges, for instance the lack of design rules, the homogeneity, stability and reproducibility of CNT films. This thesis aims to address these issues from two sides: simulation and experiment. Monte Carlo simulations show that both the sheet resistance and gauge factor of CNT films are determined essentially by the two-dimensional exclude area of CNTs. It was shown, for the first time, that the variation of the CNT film gauge factor follows the percolation scaling law. The sheet resistance and gauge factor both have a power-law divergence when approaching the percolation threshold. The standard deviation of film resistances, however, also increases correspondingly. These findings of simulations provide a general guide to the tailoring of material property of CNT films in strain sensing applications: a compromise should be made between the reproducibility, conductivity and sensitivity of CNT films depending on application purposes. From the experimental side, the processing parameters for the preparation of CNT dispersions were first investigated and optimized. The reproducibility of the film resistance is significantly improved by selecting a suitable sonication time. In strain measurements it was found that for most CNT films the film resistance responses nonlinearly to the applied strain. The dependence of the film resistance on the strain can be roughly divided into two regions with nearly linear behavior respectively. The gauge factor varies with the quality of CNTs and the depositing method. A gauge factor up to 8 was achieved in the high strain region. The nonlinear response behavior was found in simulations when the CNT waviness is properly taken into account. To achieve a high gauge factor and simultaneously retain the high conductivity and reproducibility, good-quality MWCNTs were integrated in polyethylene oxide (PEO). A high gauge factor up to 10 was achieved for the composite film with CNT weight fraction of 2.5%. The resistance and gauge factor can be tuned by changing the MWCNT weight fraction with respect to PEO. A careful comparison of simulation and experiment results show that a good qualitative agreement can be achieved between them in many respects.
7

Percolation with Plasticity Materials and Their Neuromorphic Applications

Patmiou, Maria January 2021 (has links)
No description available.
8

Computational and experimental studies of strain sensitive carbon nanotube films

Bu, Lei 29 August 2014 (has links)
The excellent electrical and mechanical properties of carbon nanotubes (CNTs) provide interesting opportunities to realize new types of strain gauges. However, there are still challenges for the further development of CNT film strain gauges, for instance the lack of design rules, the homogeneity, stability and reproducibility of CNT films. This thesis aims to address these issues from two sides: simulation and experiment. Monte Carlo simulations show that both the sheet resistance and gauge factor of CNT films are determined essentially by the two-dimensional exclude area of CNTs. It was shown, for the first time, that the variation of the CNT film gauge factor follows the percolation scaling law. The sheet resistance and gauge factor both have a power-law divergence when approaching the percolation threshold. The standard deviation of film resistances, however, also increases correspondingly. These findings of simulations provide a general guide to the tailoring of material property of CNT films in strain sensing applications: a compromise should be made between the reproducibility, conductivity and sensitivity of CNT films depending on application purposes. From the experimental side, the processing parameters for the preparation of CNT dispersions were first investigated and optimized. The reproducibility of the film resistance is significantly improved by selecting a suitable sonication time. In strain measurements it was found that for most CNT films the film resistance responses nonlinearly to the applied strain. The dependence of the film resistance on the strain can be roughly divided into two regions with nearly linear behavior respectively. The gauge factor varies with the quality of CNTs and the depositing method. A gauge factor up to 8 was achieved in the high strain region. The nonlinear response behavior was found in simulations when the CNT waviness is properly taken into account. To achieve a high gauge factor and simultaneously retain the high conductivity and reproducibility, good-quality MWCNTs were integrated in polyethylene oxide (PEO). A high gauge factor up to 10 was achieved for the composite film with CNT weight fraction of 2.5%. The resistance and gauge factor can be tuned by changing the MWCNT weight fraction with respect to PEO. A careful comparison of simulation and experiment results show that a good qualitative agreement can be achieved between them in many respects.
9

Rozptylové ztráty v magnetických materiálech na konci statorového svazku / Stray losses in magnetic material in the end of stator packet

Kopecký, Ivo January 2010 (has links)
This thesis examines the magnetic field and magnetic flow at the end of the stator synchronous machine. This problem is solid using nonlinear magnetic resistive network, which is simulating by PSpice software. A simple model of stator, consisting of stator plates, air gaps and the two-thumbs, which hold the stator together. All of this is replace magnetic nonlinear resistive network, which is then divided into elements. According to these element is a simplified model solid and analyzed.

Page generated in 0.0535 seconds