• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 10
  • 5
  • 5
  • 4
  • 3
  • 1
  • Tagged with
  • 78
  • 78
  • 27
  • 26
  • 23
  • 22
  • 18
  • 16
  • 14
  • 13
  • 12
  • 11
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Topology Investigation and System Optimization of Resonant Converters

Fu, Dianbo 16 June 2010 (has links)
Over the past several years, energy efficiency and power density have become the top concerns for power conversion. Rising energy intensity leads to a higher cost of delivering power. Meanwhile, the demand for compact power supplies grows significantly. It requires power supplies with high efficiency, low profile and high power density. Dc-dc power conversion has been widely applied for industry, medial, military and airspace applications. Conventional PWM dc-dc converters have relatively low power transfer efficiency and low power density. In contrast, resonant dc-dc converters have numerous advantages for dc-dc power conversions. In this work, topologies and system optimization of resonant converters are investigated to meet challenges of high efficiency, high power density, low EMI, easy startup and over current protection. LLC resonant converters can achieve zero-voltage-switching (ZVS) for primary side devices and zero-current-switching (ZCS) for the secondary side rectifiers. The switching loss is minimized. LLC is very attractive to overcome the issues of conventional circuits. However, challenges still remain. First of all, for low-voltage high-current applications, the synchronous rectifier (SR) with lower conduction loss is a must for high efficiency. To solve the driving issues of SRs, a novel synchronous driving scheme is proposed. Experimental results demonstrate the considerable loss reduction with utilization of the proposed driving scheme. Secondly, dc-dc converters are required to meet EMI standard. This work proposes an EMI mode. Based on the proposed model, EMI analysis and noise attenuation techniques are proposed and verified by experiments. Thirdly, startup and over-load protection are another issues of LLC resonant converters. With proposed multi-element resonant converters, the current limit issues can be resolved. In addition, the proposed multi-element resonant converters can utilize higher-order harmonics to enhance power transfer. Fourthly, for high-current applications, the secondary side structure becomes very critical. An improved secondary side construction is proposed to alleviate ac termination losses and SR paralleling issues. Novel winding structures are proposed to reduce the winding loss. The magnetic integration technique is proposed and analyzed, and an optimal integrated transformer design is proposed, which has low loss and compact size. / Ph. D.
12

Design Optimizations of LLC Resonant Converters with Planar Matrix Transformers

Prakash, Pranav Raj 12 1900 (has links)
LLC resonant converters have been a popular choice for DC-DC converters due to their high efficiency, high power density, and hold-up capability in power supplies for communication systems, datacenters, consumer electronics, and automobiles. With the rapid development of wide-bandgap devices and novel magnetic materials, the push for higher switching frequencies to achieve higher power densities at lower costs is gaining traction. To demonstrate high efficiency and high power density, the Center for Power Electronics Systems (CPES) at Virginia Tech designed an 800W, 1MHz 400V/12V LLC converter for future datacenters, which could achieve a peak efficiency of 97.6% and a power density of 900 W/in3. However, with the ever-increasing demand for online services, the performance of power delivery must also be simultaneously improved to keep pace with the demand. The focus of this thesis is improving the performance of CPES’ previous 400V/12V LLC converter by investigating different aspects of its design and operation. Ultimately, design guidelines are proposed, and improvements are demonstrated to effectively achieve higher efficiency and higher power density than the previous CPES converter. Multiple aspects of the LLC converter’s design and structure are investigated to further improve its performance, and three main areas are the focus of this thesis. The output-side termination design of the planar transformer is investigated and modeled, and design guidelines for filter capacitor selection are provided for optimal efficiency. Next, the existing shielding technique for matrix transformers, which helps reduce common-mode (CM) noise without compromising on efficiency, is investigated for asymmetry and current-sharing issues, and modifications have been proposed to improve its efficiency. Thirdly, the LLC converter’s switching frequency is optimized to improve its performance over the previous CPES converter. Finally, the hardware results with the proposed improvements are demonstrated, and the converter’s performance is compared with the previous CPES converter as well as other recent proposed solutions. / M.S. / The electricity demand by datacenters has been growing exponentially over the past few decades, especially due to the boom of artificial intelligence in addition to other internet services. This has resulted in a requirement to continually improve the efficiencies of the power delivery from the grid, through the datacenter power architecture, and finally to the loads on the server racks. The overall datacenter power architecture has been improved over time to improve the total efficiency. However, the performance of each stage along the power architecture must be improved to keep in pace with the energy demand. The focus of this thesis is to improve the performance of the 400V/12V DC-DC stage for future datacenters. Previously, the Center for Power Electronics Systems (CPES) at Virginia Tech developed a 1MHz 800W 400V/12V LLC converter with 97.6% peak efficiency and 900W/in3 power density. However, the performance of the converter must be further improved to stay ahead of the competition and keep in pace with the increasing energy demand. Multiple aspects of the LLC converter’s design and structure are investigated to further improve its performance, and three main areas are the focus of this thesis. Firstly, the high-frequency termination design, or how different components are interconnected and arranged, is studied, and a capacitance selection guideline is proposed to maximize the efficiency. Next, the existing shielding technique for matrix transformers, which helps reduce common-mode (CM) noise without compromising on efficiency, is investigated for asymmetry and current-sharing issues, and modifications have been proposed to improve its efficiency. Thirdly, the LLC converter’s switching frequency is optimized to improve its performance over the previous CPES converter. Finally, the hardware results with the proposed improvements are demonstrated, and the converter’s performance is compared with the previous CPES converter as well as other recent proposed solutions.
13

Improved Resonant Converters with a Novel Control Strategy for High-Voltage Pulsed Power Supplies

Fu, Dianbo 10 August 2004 (has links)
The growing demand for high voltage, compact pulsed power supplies has gained great attention. It requires power supplies with high power density, low profile and high efficiency. In this thesis, topologies and techniques are investigated to meet and exceed these challenges. Non-isolation type topologies have been used for this application. Due to the high voltage stress of the output, non-isolation topologies will suffer severe loss problems. Extremely low switching frequency will lead to massive magnetic volume. For non-isolation topologies, PWM converters can achieve soft switching to increase switching frequency. However, for this application, due to the large voltage regulation range and high voltage transformer nonidealities, it is difficult to optimize PWM converters. Secondary diode reverse recovery is another significant issue for PWM techniques. Resonant converters can achieve ZCS or ZVS and result in very low switching loss, thus enabling power supplies to operate at high switching frequency. Furthermore, the PRC and LCC resonant converter can fully absorb the leakage inductance and parasitic capacitance. With a capacitive output filter, the secondary diode will achieve natural turn-off and overcome reverse recovery problems. With a three-level structure, low voltage MOSFETs can be applied for this application. Switching frequency is increased to 200 kHz. In this paper, the power factor concept for resonant converters is proposed and analyzed. Based on this concept, a new methodology to measure the performance of resonant converters is presented. The optimal design guideline is provided. A novel constant power factor control is proposed and studied. Based on this control scheme, the performance of the resonant converter will be improved significantly. Design trade-offs are analyzed and studied. The optimal design aiming to increase the power density is investigated. The parallel resonant converter is proven to be the optimum topology for this application. The power density of 31 W/inch3 can be achieved by using the PRC topology with the constant power factor control. / Master of Science
14

Microcontroller (MCU) Based Simplified Optimal Trajectory Control (SOTC) for High-Frequency LLC Resonant Converters

Fei, Chao 01 July 2015 (has links)
The LLC resonant converter has been widely used as a DC-DC converter due to its high efficiency, high power density and hold-up capability in power supplies for communication systems, computers and consumer electronics. Use of the high-frequency LLC converter has also been increasing in recent years due to its high power density and integrated magnetics, which reduce the total cost. With the fast development of wideband gap devices and novel magnetic materials, the trend of pushing switching frequency higher continues. However, the control characteristics of the LLC resonant converter are much more complex than that of the PWM converter due to the dynamics of the resonant tank. This paper employs state-trajectory analysis to describe and analyze the behavior of the resonant tank. Control methods based on state-trajectory analysis were used to solve the challenges in the control of the LLC resonant converter, including unpredictable dynamics, burst mode for light-load efficiency, soft start-up and short circuit protection. Additionally, digital controllers are gradually taking the place of analog controllers in the control of the LLC resonant converter due to the advantages of the digital controllers over the analog controllers, such as their ability to be flexible and re-configurable, capable of non-linear control, and able to communicate with other controllers. Among the digital controllers, cost-effective microcontrollers (MCU) are preferred for industrial applications. Because of the advantages of the state-trajectory control and the industrial preference in the cost-effective digital controllers, it would be of great benefit to apply state-trajectory control to high-frequency LLC converters with cost-effective digital controllers. This thesis investigates the impact of digital delay on state-trajectory control. Simplified Optimal Trajectory Control (SOTC) for LLC converters is further simplified so that SOTC can be achieved with cost-effective digital controllers. Furthermore, the limitations caused by digital controller are explained in detail, and methods are proposed to apply the SOTC to high frequency LLC converter is proposed. A detailed analysis of fast load transient response, soft start-up, burst mode for light-load efficiency and synchronous rectification (SR) driving is provided. Multi-step SOTC for fast load transient response is proposed to apply cost-effective digital controllers to high-frequency LLC converters; SOTC for soft start-up with only sensing Vo is proposed to minimized the impact of digital delay on state-trajectory control; SOTC for burst mode with multi-step is proposed to eliminate the limitation of minimum off-time caused by digital controllers in constant burst-on time control; a generalized adaptive SR driving method using the ripple counter concept is proposed to significantly reduce controller resource utilization for the SR control of high-frequency LLC converters. The whole control system is demonstrated on a 500kHz 1kW 400V/12V LLC converter with a 60MHz MCU, which integrates all the proposed control methods. / Master of Science
15

LLC Resonant Converter Based Single-stage Inverter with Multi-resonant Branches

Jiao, Dong January 2022 (has links)
This paper presents a single-stage inverter with variable frequency modulation (VFM) based on LLC resonant converter. And LLC converter is a common topology of dc/dc conversion. LLC resonant converter can achieve high efficiency and soft-switching performance. Since the dc gain curve of the single-resonant LLC converter is flat when the switching frequency is larger than the resonant frequency, namely fs>fr, an additional L-C series resonant branch is paralleled to the original resonant tank to introduce higher-order-harmonic resonant current and a zero-gain point to the gain curve. Higher-order-harmonics help to deliver power and the zero-gain point enlarges the gain range which improves output THD and reduces the switching frequency range. A 1.2 kW prototype is built to demonstrate the performance of the proposed inverter. Zero-voltage-switching (ZVS) and zero-current-switching (ZCS) are achieved on the primary side and secondary side, respectively. And 97.3% efficiency and 2.17% voltage THD are achieved at full load condition, while 97.2% efficiency and 3.2% voltage THD are achieved at half load condition. / M.S. / The inverter is widely used to connect renewable energy into the grid by converting dc to ac waveform, like photovoltaic (PV) technology. Basically, the two-stage topology is usually used. The inverter would consist of two stages working in high frequency, the first stage is dc/dc converter which can regulate the input voltage to the desired bus voltage for the second stage, and the second stage is dc/ac converter. The first stage works at a specific switching frequency, so it can be designed to achieve higher efficiency in dc/dc conversion. The second stage also works at high switching frequency and converts dc to ac commonly by using SPWM which changes the duty cycle ratio in a sinusoidal pattern. The single-stage inverter only has one stage working in high frequency while the second stage works at twice line frequency. The first stage converts dc to rectified ac waveform and the second stage unfolds it to ac. The topology of LLC resonant converter being applied for the first stage of the single-stage inverter has been proposed. This topology uses variable-frequency-modulation (VFM) which varying switching frequency on the primary side to output different voltage levels. And it achieves zero-voltage-switching (ZVS). However, LLC converter can hardly output very low voltage due to the flat voltage gain curve at high frequency. Also, LLC converter only transfers the fundamental harmonic component to the load. If the higher-order harmonic components help transfer power when the switching frequency equals the resonant frequency, the current shape will be more like a square wave and the peak of resonant current can be reduced. This thesis proposes a topology that has two L-C resonant branches in parallel for the resonant tank in the converter. And the paralleled resonant branches produce a zero-gain frequency point into the gain curve so that the gain range is enlarged within the reduced switching frequency range and 3rd harmonic component of the resonant current helps to transfer power so that the rms value of resonant current can also be reduced.
16

Analysis and Design of Multiport Converters for Photovoltaic and Electrical Vehicle Applications

Rezaii, Reza 01 January 2024 (has links) (PDF)
The widespread adoption of photovoltaic (PV) and electric vehicle (EV) technologies is crucial for mitigating greenhouse gas emissions. A Multi-Port Converter (MPC) connects multiple PV panels, improving efficiency and reducing costs. In EVs, MPCs extend battery lifespan by adding energy sources, enhancing system quality beyond reliance on Li-ion batteries. This dissertation proposes a Quad-input LLC topology for PV microinverters. It utilizes a single LLC resonant tank and two Y switches configurations. An MPPT control strategy based on Perturb and Observe (P&O) method ensures independent MPPT for each panel. The zero-voltage switching (ZVS) is achieved across all switches for wide input range and load variations. A 500W prototype validates the operation, achieving peak efficiency of 94.3% with individual MPP tracking. Also, a high gain DC-DC converter for hybrid inverter is proposed. The proposed converter can be used in the PV panel level for hybrid inverter where the low voltage of PV must be increased to DC-link voltage. The proposed converter uses two inductors connected either in series or parallel during discharge or charge mode. The designed hybrid system based on this high gain converter has three ports that can be connected to PV, battery, and grid/ac load. In addition, a bidirectional hybrid DC-DC converter (BHDC) is proposed for hybrid energy storage systems in electric vehicles. The converter can connect both batteries and supercapacitors to the DC-link. With a wide voltage-gain range, low voltage stress on power switches, and common ground between low and high voltage ports, the converter achieves zero-voltage switching (ZVS) via synchronous rectification, improving efficiency. A 300W prototype with a 94.8% maximum efficiency in step-up mode and 94.2% in step-down mode was built to validate the wide voltage gain range and voltage control scheme.
17

Analysis, Simulation And Design Of Series Resonant Converter For High Voltage Applications

Nathan, Biju S 12 1900 (has links) (PDF)
No description available.
18

Vícefázový serio-paralelní LLC rezonanční měnič / Multiphase Series Parallel LLC resonant converter

Drda, Václav January 2010 (has links)
The project deals with the design of a switch-mode power supply (SMPS) with a medium and high power output. The power supply uses multiphase control switching. Electric energy is converted through a series parallel LLC resonant circuit to reach the maximum efficiency with a small size and cost efficiency of the designed power supply. The semiconductor switches use ZVS (Zero Voltage Switching) on the primary side and ZCS (Zero Current Switching) on the secondary side of the converter. The design of the converter is based on the knowledge of the high power output converters (types of switching, art topologies) and resonant topologies (series resonant circuit – SRC, parallel resonant circuit – PRC and series parallel circuit –SPRC). The design of the converter was done theoreticaly and tested by using simulation program. The simulation and partial tests served to build prototype the Interleaves Converter (ILLC). The function of the converter was tested in laboratory. The laboratory results have been compared with the theoretical and the simulation results.
19

High-Efficiency SiC Power Conversion : Base Drivers for Bipolar Junction Transistors and Performance Impacts on Series-Resonant Converters

Tolstoy, Georg January 2015 (has links)
This thesis aims to bring an understanding to the silicon carbide (SiC) bipolar junction transistor (BJT). SiC power devices are superior to the silicon IGBT in several ways. They are for instance, able to operate with higher efficiency, at higher frequencies, and at higher junction temperatures. From a system point of view the SiC power device could decrease the cost and complexity of cooling, reduce the size and weight of the system, and enable the system to endure harsher environments. The three main SiC power device designs are discussed with a focus on the BJT. The SiC BJT is compared to the SiC junction field-effect transistor (JFET) and the metal-oxide semiconductor field-effect transistor (MOSFET). The potential of employing SiC power devices in applications, ranging from induction heating to high-voltage direct current (HVDC), is presented. The theory behind the state-of-the-art dual-source (2SRC) base driver that was presented by Rabkowski et al. a few years ago is described. This concept of proportional base drivers is introduced with a focus on the discretized proportional base drivers (DPBD). By implementing the DPBD concept and building a prototype it is shown that the steady-state consumption of the base driver can be reduced considerably.  The aspects of the reverse conduction of the SiC BJT are presented. It is shown to be of importance to consider the reduced voltage drop over the base-emitter junction. Last the impact of SiC unipolar and bipolar devices in series-resonant (SLR) converters is presented. Two full-bridges are designed and constructed, one with SiC MOSFETs utilizing the body diode for reverse conduction during the dead-time, and the second with SiC BJTs with anti-parallel SiC Schottky diodes. It is found that the SiC power devices, with their absence of tail current, are ideal devices to fully utilize the soft-switching properties that the SLR converters offer. The SiC MOSFET benefits from its possibility to utilize reverse conduction with a low voltage drop. It is also found that the size of capacitance of the snubbers can be reduced compare to state-of-the-art silicon technology. High switching frequencies of 200 kHz are possible while still keeping the losses low. A dead-time control strategy for each device is presented. The dual control (DuC) algorithm is tested with the SiC devices and compared to frequency modulation (FM). The analytical investigations presented in this thesis are confirmed by experimental results on several laboratory prototype converters. / <p>QC 20150529</p>
20

High-Efficiency and High-Frequency Resonant Converter Based Single-Stage Soft-Switching Isolated Inverter Design and Optimization with Gallium-Nitride (GaN)

Wen, Hao 30 September 2021 (has links)
Isolated inverter can provide galvanic isolation which is necessary for some applications with safety regulations. Traditionally, a two-stage configuration is widely applied with isolated dc-dc stage and a sinusoidal pulse-width-modulated (SPWM) dc-ac stage. However, this two-stage configuration suffers from more components count, more complex control and tend to have lower efficiency and lower power density. Meanwhile, a large dc bus capacitor is needed to attenuate the double line frequency from SPWM for two-stage configuration. Therefore, the single-stage approach including an isolated dc-rectified sine stage and a line frequency unfolder is preferable. Since the unfolder circuit is at line frequency being almost lossless, the isolated dc-rectified sine stage becomes critical. However, the relevant research for the single-stage isolated inverter is limited. People either utilize PWM based converter as dc-rectified sine stage with duty cycle adjustment or apply SRC or LLC resonant converter for better soft switching characteristics. For PWM based converter, hard switching restricts the overall inverter efficiency, while for SRC/LLC, enough wide voltage gain range and full range ZVS are the major issues. This dissertation aims to provide solutions for a high-efficiency, high-frequency resonant converter based single-stage soft-switching isolated inverter design. The LLC and LCLCL resonant converters are applied as the isolated dc-rectified sine stage with variable frequency modulation (VFM). Therefore, the rectified sine wave generation consists of many dc-dc conversion with different switching frequencies and an efficient dc-rectified sine stage design needs each dc-dc conversion to be with high efficiency. This dissertation will first propose the optimization methods for LLC converter dc-dc conversion. ZVS models are derived to ensure fully ZVS performance for primary side GaN devices. As a large part in loss breakdown, the optimization for transformer is essential. The LLC converter can achieve above 99% efficiency with proposed optimization approach. Moreover, the channel turn-off energy model is presented for a more accurate loss analysis. With all the design and optimization considerations, a MHz LLC converter based isolated inverter is designed and a hybrid modulation method is proposed, which includes full bridge (FB) VFM for output high line region and half bridge (HB) VFM for output low line region. By changing from FB to HB, the output voltage gain is reduced to half to have a wider voltage gain range. However, the total harmonic distortion (THD) of output voltage at light load will be impacted since the voltage gain will be higher with lighter load at the maximum switching frequency. A MHz LCLCL converter based isolated inverter is proposed for a better output voltage THD at light load conditions. The paralleled LC inside the LCLCL resonant tank can naturally create a zero voltage gain point at their resonant frequency, which shows superior performance for rectified sine wave generation. Besides the better THD performance, the LCLCL converter based isolated inverter also features for easier control, better ZVS performance and narrower switching frequency range. Meanwhile, the LCLCL based inverter topology has bi-directional power flow capability as well. With variable frequency modulation for ac-dc, this topology is still a single-stage solution compared to the traditional two-stage solution including PFC + LLC configuration. / Doctor of Philosophy / Inverters can convert dc voltage to ac voltage and typically people use two-stage approach with isolated dc-dc stage and dc-ac stage. However, this two-stage configuration suffers from more components count, more complex control and tend to have lower efficiency and lower power density. Therefore, the single-stage solution with dc-rectified sine wave stage and a line frequency unfolder becomes appealing. The unfolder circuit is to unfold the rectifier sine wave to an ac sine wave at the output. Since the unfolder is at line frequency and can be considered lossless, the key design is for the dc-rectified sine stage. The resonant converter featured for soft switching seems to be a good candidate. However, the inverter needs soft switching for the whole range and an enough wide voltage gain, which makes the design difficult, especially the target is high efficiency for the overall inverter. This dissertation aims to provide solutions for a high-efficiency, high-frequency resonant converter based single-stage soft-switching isolated inverter design. The LLC and LCLCL resonant converters are applied as the isolated dc-rectified sine stage with variable frequency modulation (VFM). Therefore, the rectified sine wave generation consists of many dc-dc conversion with different switching frequencies and an efficient dc-rectified sine stage design needs each dc-dc conversion to be with high efficiency. The design considerations and optimization methods for the LLC dc-dc conversion are firstly investigated. Based on these approaches, a MHz LLC converter based isolated inverter is designed with proposed hybrid modulation method. To further improve the light load performance, a MHz LCLCL converter based isolated inverter topology is proposed. The paralleled LC inside the LCLCL resonant tank can naturally create a zero voltage gain point which shows superior characteristics for rectified sine wave generation. Moreover, the LCLCL resonant converter based topology has bi-directional capability as well so it can work well for ac voltage to dc voltage conversion.

Page generated in 0.0883 seconds