• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 35
  • 35
  • 16
  • 11
  • 11
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Shear Modulus Degradation of Liquefying Sand: Quantification and Modeling

Olsen, Peter A. 13 November 2007 (has links) (PDF)
A major concern for geotechnical engineers is the ability to predict how a soil will react to large ground motions produced by earthquakes. Of all the different types of soil, liquefiable soils present some of the greatest challenges. The ability to quantify the degradation of a soil's shear modulus as it undergoes liquefaction would help engineers design more reliably and economically. This thesis uses ground motions recorded by an array of downhole accelerometers on Port Island, Japan, during the 1995 Kobe Earthquake, to quantify the shear modulus of sand as it liquefies. It has been shown that the shear modulus of sand decreases significantly as it liquefies, apparently decreasing in proportion to the increasing excess pore water pressure ratio (Ru). When completely liquefied, the shear modulus of sand (Ru = 1.0) for a relative density of 40 to 50% is approximately 15% of the high-strain modulus of the sand in its non-liquefied state, or 1% of its initial low-strain value. Presented in this thesis is an approach to modeling the shear modulus degradation of sand as it liquefies. This approach, called the "degrading shear modulus backbone curve method" reasonably predicts the hysteretic shear stress behavior of the liquefied sand. The shear stresses and ground accelerations computed using this method reasonably matches those recorded at the Port Island Downhole Array (PIDA) site. The degrading shear modulus backbone method is recommended as a possible method for conducting ground response analyses at sites with potentially liquefiable soils.
32

Ultimate Limit States in Controlled Rocking Steel Braced Frames

Steele, Taylor Cameron January 2019 (has links)
The Insurance Bureau of Canada released a report in 2013 that evaluated the seismic risk of two major metropolitan areas of Canada, with projected losses of $75bn in British Columbia along the Cascadia subduction zone, and $63bn in the east through the Ottawa-Montreal-Quebec corridor. Such reports should prompt researchers and designers alike to rethink the way that seismic design is approached in Canada to develop resilient and sustainable cities for the future. To mitigate the economic losses associated with earthquake damage to buildings in seismically active areas, controlled rocking steel braced frames have been developed as a seismically resilient low-damage lateral-force resisting system. Controlled rocking steel braced frames (CRSBFs) mitigate structural damage during earthquakes through a controlled rocking mechanism, where energy dissipation can be provided at the base of the frame, and pre-stressed tendons pull the frame back to its centred position after rocking. The result is a building for which the residual drifts of the system after an earthquake are essentially zero, and the energy dissipation does not result from structural damage. Design methods for the base rocking joint and the capacity-protected frame members in CRSBFs have been proposed and validated both numerically and experimentally. However, the is no consensus on how to approach the design of the frame members, questions remain regarding how best to design CRSBFs to prevent building collapse, and no experimental work has been done regarding how to connect the CRSBF to the rest of the structure to accommodate the rocking motion. Because the force limiting mechanism of a CRSBF is rocking only at the base of the frame, the frame member forces are greatly influenced by the higher-mode response, resulting in more complex methods to design the frame members. This thesis begins by outlining two new design procedures for the frame members in controlled rocking steel braced frames that target both simplicity and accuracy. The first is a dynamic procedure that requires a truncated response spectrum analysis on a model of the frame with modified boundary conditions to consider the rocking behaviour. The second is an equivalent static procedure that does not require any modifications to the elastic frame model, instead using theory-based lateral force distributions to consider the higher modes of the rocking structure. Neither method requires empirical calibration to estimate the forces at the target intensity. The base rocking joint design is generally in good agreement between the various research programs pioneering the development of the CRSBFs. However, the numerous parameters available to select during the design of the base rocking joint give designers an exceptional amount of control over the performance of the system, and little research is available on how best to select these parameters to target or minimise the probability of collapse for the building. This thesis presents a detailed numerical model to capture collapse of buildings with CRSBFs as their primary lateral force resisting system and uses this model to generate collapse fragility curves for different base rocking joint design parameters. The parameters include the response modification factor, the hysteretic energy dissipation ratio, and the post-tensioning prestress ratio. This work demonstrates that CRSBFs are resilient against collapse, as designing the base rocking joint with response modification factors as large as 30, designing the post-tensioning to prevent yielding at moderate seismic hazard levels, and using zero energy dissipation could lead to designs with acceptable margins of safety against collapse. While the design procedures are shown to be accurate for estimating the frame member force demand for the targeted intensity level, there is still a high level of uncertainty around what intensity of earthquake a building will experience during its lifespan, and there is no consensus on what intensity should be targeted for design. To address this, the ability of the capacity design procedures to provide a sufficiently low probability of collapse due to excessive frame member buckling and yielding is evaluated and compared to the probability that the building will collapse due to excessive rocking of the frame. The results of the research presented here suggest that the probability of collapse due to either frame member failure or excessive rocking should be evaluated separately, and that targeting the intensity with a 10% probability of exceedance in 50 years is sufficient for the design of the frame members. Finally, critical to the implementation of CRSBFs in practice is how they may be connected to the rest of the structure to accommodate the uplifting of the CRSBF while rocking under large lateral forces. An experimental program was undertaken to test three proposed connection details to accommodate the relative uplifts and forces. The connections that accommodate the uplifts through sliding performed better than that which accommodated the uplifts though material yielding, but the best way to transfer the forces and accommodate the uplifting without influencing the overall behaviour of the system is to position the connection such that it does not need to undergo large uplifts and carry lateral force simultaneously. A detailed numerical model of the experimental setup is presented and is shown to simulate the important response quantities for each of the tested connections. Using the results of this work, designers worldwide will be confident to design CRSBFs for structures from the base rocking joint to the selection of floor-to-frame connections for a complete system design while ensuring a safe and resilient building structure for public use and well-being. / Thesis / Doctor of Philosophy (PhD) / Traditional approaches to seismic design of buildings have generally been successful at preventing collapse and protecting the lives of the occupants. However, the buildings are often left severely damaged, often beyond repair. To address these concerns, controlled rocking steel braced frames have been proposed as part of a new construction technique to mitigate or prevent damage to steel buildings during earthquakes, but several aspects of the design and overall safety have yet to be explored or demonstrated. This thesis proposes and validates new tools to design controlled rocking steel braced frames and provides recommendations on how best to design them to achieve a safe probability against collapse. Details are proposed and presented for components to connect the controlled rocking steel braced frames into the rest of the structure. The findings of this thesis will aid practitioners looking to deliver resilient and sustainable structural designs for buildings in our cities of the future.
33

Spacecraft dynamic analysis and correlation with test results : Shock environment analysis of LISA Pathfinder at VESTA test bed

Kunicka, Beata Iwona January 2017 (has links)
The particular study case in this thesis is the shock test performed on the LISA Pathfinder satellite conducted in a laboratory environment on a dedicated test bed: Vega Shock Test Apparatus (VESTA). This test is considered fully representative to study shock levels produced by fairing jettisoning event at Vega Launcher Vehicle, which induces high shock loads towards the satellite. In the frame of this thesis, some transient response analyses have been conducted in MSC Nastran, and a shock simulation tool for the VESTA test configuration has been developed. The simulation tool is based on Nastran Direct Transient Response Analysis solver (SOL 109), and is representative of the upper composite of Vega with the LISA Pathfinder coupled to it. Post-processing routines of transient response signals were conducted in Dynaworks which served to calculate Shock Response Spectra (SRS). The simulation tool is a model of forcing function parameters for transient analysis which adequately correlates with the shock real test data, in order to understand how the effect of shock generated by the launcher is seen in the satellite and its sub-systems. Since available computation resources are limited the parameters for analysis were optimised for computation time, file size, memory capacity,  and model complexity. The forcing function represents a release of the HSS clamp band which is responsible for fairing jettisoning, thus the parameters which were studied are mostly concerning the modelling of this event. Among many investigated, those which visibly improved SRS correlation are radial forcing function shape, implementation of axial impulse, clamp band loading geometry and refined loading scheme. Integration time step duration and analysis duration were also studied and found to improve correlation.  From each analysis, the qualifying shock environment was then derived by linear scaling in proportion of the applied preload, and considering a qualification margin of 3dB. Consecutive tracking of structural responses along shock propagation path exposed gradual changes in responses pattern and revealed an important property that a breathing mode (n = 0) at the base of a conical Adapter translates into an axial input to the spacecraft. The parametrisation itself was based on responses registered at interfaces located in near-field (where the clamp band is located and forcing function is applied) and medium-field with respect to the shock event location. Following shock propagation path, the final step was the analysis of shock responses inside the satellite located in a far-field region, which still revealed a very good correlation of results. Thus, it can be said that parametrisation process was adequate, and the developed shock simulation tool can be qualified. However, due to the nature of shock, the tool cannot fully replace VESTA laboratory test, but can support shock assessment process and preparation to such test. In the last part of the thesis, the implementation of some finite element model improvements is investigated. Majority of the panels in spacecraft interior exhibited shock over-prediction due to finite element model limitation. Equipment units modelled as lump masses rigidly attached with RBE2 elements to the panel surface are a source of such local over-predictions. Thus, some of the units were remodelled and transient responses were reinvestigated. It was found that remodelling with either solid elements, or lump mass connected to RBE3 element and reinforced by RBE2 element, can significantly improve local transient responses. This conclusion is in line with conclusions found in ECSS Shock Handbook.
34

Linear Dynamic System Analyses with Creo Simulate – Theory & Application Examples, Capabilities, Limitations – / Lineare dynamische Systemanalysen mit Creo Simulate – Theorie & Anwendungsbeispiele, Programmfähigkeiten und Grenzen –

Jakel, Roland 07 June 2017 (has links) (PDF)
1. Einführung in die Theorie dynamischer Analysen mit Creo Simulate 2. Modalanalysen (Standard und mit Vorspannung) 3. Dynamische Analysen einschließlich Klassifizierung der Analysen; einige einfache Beispiele für eigene Studien (eine Welle unter Unwuchtanregung und ein Ein-Massen-Schwinger) sowie etliche Beispiele größerer dynamischer Systemmodelle aus unterschiedlichsten Anwendungsbereichen 4. Feedback an den Softwareentwickler PTC (Verbesserungsvorschläge und Softwarefehler) 5. Referenzen / 1. Introduction to dynamic analysis theory in Creo Simulate 2. Modal analysis (standard and with prestress) 3. Dynamic analysis, including analysis classification, some simple examples for own self-studies (shaft under unbalance excitation and a one-mass-oscillator) and several real-world examples of bigger dynamic systems 4. Feedback to the software developer PTC (enhancement requests and code issues) 5. References
35

Linear Dynamic System Analyses with Creo Simulate – Theory & Application Examples, Capabilities, Limitations –: Linear Dynamic System Analyses with Creo Simulate– Theory & Application Examples, Capabilities, Limitations –

Jakel, Roland 07 June 2017 (has links)
1. Einführung in die Theorie dynamischer Analysen mit Creo Simulate 2. Modalanalysen (Standard und mit Vorspannung) 3. Dynamische Analysen einschließlich Klassifizierung der Analysen; einige einfache Beispiele für eigene Studien (eine Welle unter Unwuchtanregung und ein Ein-Massen-Schwinger) sowie etliche Beispiele größerer dynamischer Systemmodelle aus unterschiedlichsten Anwendungsbereichen 4. Feedback an den Softwareentwickler PTC (Verbesserungsvorschläge und Softwarefehler) 5. Referenzen / 1. Introduction to dynamic analysis theory in Creo Simulate 2. Modal analysis (standard and with prestress) 3. Dynamic analysis, including analysis classification, some simple examples for own self-studies (shaft under unbalance excitation and a one-mass-oscillator) and several real-world examples of bigger dynamic systems 4. Feedback to the software developer PTC (enhancement requests and code issues) 5. References

Page generated in 0.0624 seconds