• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • Tagged with
  • 13
  • 13
  • 13
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantitative Genetic Analysis of Reproduction Traits in Ball Pythons

Morrill, Benson H. 01 May 2011 (has links)
Although the captive reproduction of non-avian reptiles has increased steadily since the 1970’s, a dearth of information exists on successful management practices for large captive populations of these species. The data reported here come from a captive population of ball pythons (Python regius) maintained by a commercial breeding company, The Snake Keeper, Inc. (Spanish Fork, UT). Reproductive data are available for 6,480 eggs from 937 ball python clutches. The data presented suggest that proper management practices should include the use of palpation and/or ultrasound to ensure breeding occurs during the proper time of the female reproductive cycle, and that maintenance of proper humidity during the incubation of eggs is vitally important. Ball python reproduction traits (clutch size, clutch mass, relative clutch mass, egg mass, hatch rate, egg length, egg width, hatchling mass, healthy offspring per clutch, week laid, and days of incubation) were recorded for the clutches laid during this study. For the 937 clutches, the identity of the dam and sire were known for 862 (92%) and 777 (83%) of the clutches, respectively. A multivariate model that included nine of the 11 traits listed above was compiled. Heritability and genetic and phenotypic correlations were calculated from the multivariate analysis. The trait that showed the most promise for use in artificial selection to increase reproduction rates was clutch size due to considerable genetic variation, high heritability, and favorable genetic correlations with other reproduction traits. Although large datasets have been published for twinning in avian species, relatively few are available for non-avian reptiles. Reported here are 14 sets of twins produced from 6,480 eggs from 937 ball python clutches. The survival rate for twins during the first 3 months of life in our study was 97%. Interestingly, 11 of the sets of twins were identical in sex and phenotype, and additional genetic data suggested the rate of monozygotic twinning within this captive population of ball pythons was higher than that of dizygotic twinning. Further, using microsatellite analysis we were able to generate data that shows three sets of python twins were genetically identical.
2

Software implementation of modeling and estimation of effect size in multiple baseline designs

Xu, Weiwei, active 2013 22 April 2014 (has links)
A generalized design-comparable effect size modeling and estimation for multiple baseline designs across individuals has been proposed and evaluated by Restricted Maximum Likelihood method in a hierarchical linear model using R. This report evaluates the exact approach of the modeling and estimation by SAS. Three models (MB3, MB4 and MB5) with same fixed effects and different random effects are estimated by PROC MIXED procedure with REML method. The unadjusted size and adjusted effect size are then calculated by matrix operation package PROC IML. The estimations for the fixed effects of the three models are similar to each other and to that of R. The variance components estimated by the two software packages are fairly close for MB3 and MB4, but the results are different for MB5 which exhibits boundary conditions for variance-covariance matrix. This result suggests that the nlme library in R works differently than the PROC MIXEDREML method in SAS under extreme conditions. / text
3

Análise de experimentos em látice quadrado no melhoramento vegetal utilizando modelos mistos / Analysis of experiments in square lattice in plant breeding using mixed models

Paulenas, Viviane Panariello 05 October 2016 (has links)
Experimentos conduzidos no delineamento látice ou reticulado são bastante comuns no melhoramento genético vegetal em que diversos materiais genéticos são comparados, principalmente nas etapas iniciais do programa, visando explorar com maior intensidade a variabilidade genética disponível. Em situações de restrições espaciais e financeiras estes delineamentos se destacam por permitir a comparação de todas as progênies em teste estando ou não instaladas no mesmo bloco. O objetivo do trabalho foi a avaliação de testes de progênies de milho (Zea mays L.), em diferentes ambientes para o caráter produção de grãos em t.ha-1. Duzentas e cinquenta e seis progênies foram instaladas em 4 estações experimentais do município de Piracicaba em diferentes anos agrícolas. Os dados de produção de grãos obtidos pelos diferentes ambientes foram analisados de forma individual e conjunta, a fim de verificar presença da interação genótipo × ambiente. O delineamento usado foi, portanto, o látice quadrado 16 × 16, com duas repetições em cada local. Duas abordagens experimentais foram confrontadas, considerando a estrutura de blocos incompletos parcialmente balanceados do látice e a outra em que cada repetição do látice foi analisada como se fosse um bloco completo. Uma maneira de se analisar estruturas experimentais como esta é utilizando modelos mistos, por meio da inclusão de fatores de efeito aleatório e, fazendo o uso da máxima verossimilhança restrita (REML) para estimar os componentes de variância associados a tais fatores com um menor viés. Além dos componentes de variância, os EBLUPs (melhores preditores lineares não viesados empíricos) também foram calculados e a partir deles foi verificada a correlação entre os diferentes ambientes, e a porcentagem de progênies selecionadas comparando-se os resultados obtidos pelas duas abordagens do conjunto de dados. Análises estatísticas foram implementadas utilizando o software gratuito R, com o pacote estatístico lme4. / Experiments conducted in the lattice design are quite common in plant breeding in which several genetic materials are compared, especially in the early stages of the program, aiming to explore more intensively the genetic variability available. In situations of space and financial constraints these designs stand out for allowing the comparison of all progenies being tested whether or not installed in the same block. The aim of the study was the evaluation of maize (Zea mays L.) progeny tests in different environments for grain yield in t.ha-1. Two hundred and fifty six progenies were tested in four experimental stations in the city of Piracicaba, in different agricultural years. Grain production data obtained by different environments were analyzed individually and jointly in order to verify the presence of genotype × environment interaction. Therefore, the square lattice design with dimension 16 × 16 was used with two replications in each location. Two experimental approaches were compared, considering the partially balanced incomplete block structure of the lattice and the other in each repetition of the lattice was analyzed as if it were a complete block. One way to analyze experimental structures like this is with the use of mixed models, by adding random effect factors, and by making use of the restricted maximum likelihood (REML) for estimating the variance components associated with such factors with less bias. Besides the variance components, EBLUPs (empirical best linear predictor unbiased) were also calculated and from them was checked the correlation between the different environments, and the percentage of selected progenies comparing the results obtained by the two assembly approaches data. Statistical analyzes were implemented for the open-souce software R, using the statistical package lme4.
4

Comparação de métodos de estimação de componentes de variância e parâmetros genéticos considerando o delineamento III aplicado a caracteres quantitativos em milho / Comparison of estimation methods for variance components and genetic parameters considering the Design III applied to quantitative characters in maize

Coelho, Angela Mello 09 April 2010 (has links)
Esse trabalho teve como objetivo comparar métodos de estimação de componentes de variância e parâmetros genéticos, considerando tanto o delineamento estatístico fatorial instalado em látice quadrado como o delineamento genético III. Como referência, foram utilizados três conjuntos de dados reais, em melhoramento genético de milho, relativos aos caracteres de produção de grãos (gramas por parcela), altura da folha bandeira ao chão (centímetros) e o número de folhas entre a primeira espiga e o pendão; sendo que a altura da folha bandeira e o número de folhas foram obtidos pela média entre cinco plantas competitivas para cada parcela. O método da Análise da Variância (ANOVA), conforme indicado pelo Delineameno III, foi utilizado na análise dos dados e estimação dos componentes de variância relativos ao modelo matemático, variâncias genéticas, coeficiente de herdabilidade e grau médio de dominância para cada um dos três caracteres estudados. Essas estimativas foram utilizadas na simulação de 1000 conjuntos de dados com características semelhantes a cada um dos conjuntos de dado reais considerados. Os métodos da ANOVA e da máxima verossimilhança restrita (REML) foram utilizados na predição dos parâmetros já mencionados para cada um dos conjuntos de dados simulados dentro de cada caráter. As 1000 estimativas obtidas por cada método, para cada caráter estudado, foram utilizadas no cálculo de estatísticas descritivas (média, desvio-padrão e acurácia relativa) e na montagem de gráficos de Box-plot. Utilizando as informações obtidas a partir das estimativas fornecidas por cada método e em posse dos valores reais que essas estimativas deveriam prever (valor utilizado na simulação dos dados) foi possível comparar ambos os métodos quanto à eficiência das estimativas por eles fornecidas. Ambos os métodos apresentaram características semelhantes na predição da maioria dos componentes de variância relativos ao modelo matemático, sendo que as maiores disparidades se deram para os componentes relativos aos efeitos de progênie (?p2) e as interações entre progênie e linhagem (?pt2) e entre progênie, linhagem e ambiente (?pta2); os quais são os componentes de maior peso no cálculo das variâncias e parâmetros genéticos. O método da ANOVA foi o bastante eficiente na predição de ?p2, sendo que o método da REML se aproxima dos resultados obtidos pelo método da ANOVA conforme diminuem os valores de referência para esse componente; para ?pt2 o método da REML se mostrou mais eficiente conforme maior é o valor de referência, porém, perde eficiência e se aproxima do método da ANOVA conforme o valor de referência do componente diminui. Ambos os métodos se mostraram ineficientes na predição de ?pta2, porém o método da REML foi o menos eficiente. O melhor desempenho do método da ANOVA na predição dos componentes de variância de maior peso no cálculo das variâncias genéticas levou a um melhor desempenho desse método na predição de todos os parâmetros genéticos, com exceção da variância de dominância, a qual depende unicamente de ?pt2. Porém, foi observada uma tendência no método da ANOVA, em média, na superestimação do grau médio de dominância em cerca de 45% do seu valor de referência, independentemente do caráter estudado. / This work aimed to compare estimation methods for variance components and genetic parameters, considering the factorial statistical design set in randomized blocks and the genetic Design III. As reference, three sets of real data were used, on maize genetic improvement, related to the characters: grain yield (grams by plot), plant height, measured from the ground to the °ag leaf in centimeters, and the number of leaves above the uppermost ear. The analysis of variance method (ANOVA), accordingly to the proposed by the Design III, was used on the analysis of the data and estimation of the variance components derived from the mathematical model, genetic variances, heritability and average degree of dominance for each of the studied characters. This estimatives were used on the simulation of 1000 data sets with similar characteristics to the real data analyzed. The ANOVA and restricted maximum likelihood (REML) methods were used on the prediction of the already mentioned parameters for each of the simulated data sets within each character. The 1000 estimatives obtained by each method, for each studied character, were used on the calculation of descriptive statistics (mean, standard deviation and relative accuracy) and for the ¯tting of box-plot graphics. Through the information obtained from the estimatives given by each method and in possession of the actual values that they should predict (values used in the simulation of the data sets) it was possible to compare both methods as to the e±ciency of the estimatives given by them. Both methods presented similar characteristics on the prediction of most of the variance components derived from the mathematical model, being that most di®erences were pertinent to the components related to the e®ects of progeny (¾2 p) and to the interactions between progeny and parental inbred (¾2 pt) and between progeny, parental inbred and environment (¾2 pta); which are the components of greater importance on the calculation of the genetic parameters. The ANOVA method was very e±cient on the prediction of ¾2 p, being that the smaller the reference value for this component, more the REML method approached the results obtained by the ANOVA method; for larger values of ¾2 pt the most e±cient was the REML method, but its e±ciency decayed and approached the ANOVA method for smaller reference values for this component. Both methods were poorly e±cient on the prediction of ¾2 pta, but the REML method was the least e±cient. The better performance of the ANOVA method on the prediction of the variance components of greater importance on the calculation of the genetic variances lead to a better performance of the ANOVA method on the prediction of all genetic parameters, with exception to the dominance variance, which depended solely on ¾2 pt. However, it was observed a tendency on the ANOVA method, in average, on the overestimation of the average degree of dominance of around 45% of the actual reference value, independently of the studied character.
5

Análise de experimentos em látice quadrado no melhoramento vegetal utilizando modelos mistos / Analysis of experiments in square lattice in plant breeding using mixed models

Viviane Panariello Paulenas 05 October 2016 (has links)
Experimentos conduzidos no delineamento látice ou reticulado são bastante comuns no melhoramento genético vegetal em que diversos materiais genéticos são comparados, principalmente nas etapas iniciais do programa, visando explorar com maior intensidade a variabilidade genética disponível. Em situações de restrições espaciais e financeiras estes delineamentos se destacam por permitir a comparação de todas as progênies em teste estando ou não instaladas no mesmo bloco. O objetivo do trabalho foi a avaliação de testes de progênies de milho (Zea mays L.), em diferentes ambientes para o caráter produção de grãos em t.ha-1. Duzentas e cinquenta e seis progênies foram instaladas em 4 estações experimentais do município de Piracicaba em diferentes anos agrícolas. Os dados de produção de grãos obtidos pelos diferentes ambientes foram analisados de forma individual e conjunta, a fim de verificar presença da interação genótipo × ambiente. O delineamento usado foi, portanto, o látice quadrado 16 × 16, com duas repetições em cada local. Duas abordagens experimentais foram confrontadas, considerando a estrutura de blocos incompletos parcialmente balanceados do látice e a outra em que cada repetição do látice foi analisada como se fosse um bloco completo. Uma maneira de se analisar estruturas experimentais como esta é utilizando modelos mistos, por meio da inclusão de fatores de efeito aleatório e, fazendo o uso da máxima verossimilhança restrita (REML) para estimar os componentes de variância associados a tais fatores com um menor viés. Além dos componentes de variância, os EBLUPs (melhores preditores lineares não viesados empíricos) também foram calculados e a partir deles foi verificada a correlação entre os diferentes ambientes, e a porcentagem de progênies selecionadas comparando-se os resultados obtidos pelas duas abordagens do conjunto de dados. Análises estatísticas foram implementadas utilizando o software gratuito R, com o pacote estatístico lme4. / Experiments conducted in the lattice design are quite common in plant breeding in which several genetic materials are compared, especially in the early stages of the program, aiming to explore more intensively the genetic variability available. In situations of space and financial constraints these designs stand out for allowing the comparison of all progenies being tested whether or not installed in the same block. The aim of the study was the evaluation of maize (Zea mays L.) progeny tests in different environments for grain yield in t.ha-1. Two hundred and fifty six progenies were tested in four experimental stations in the city of Piracicaba, in different agricultural years. Grain production data obtained by different environments were analyzed individually and jointly in order to verify the presence of genotype × environment interaction. Therefore, the square lattice design with dimension 16 × 16 was used with two replications in each location. Two experimental approaches were compared, considering the partially balanced incomplete block structure of the lattice and the other in each repetition of the lattice was analyzed as if it were a complete block. One way to analyze experimental structures like this is with the use of mixed models, by adding random effect factors, and by making use of the restricted maximum likelihood (REML) for estimating the variance components associated with such factors with less bias. Besides the variance components, EBLUPs (empirical best linear predictor unbiased) were also calculated and from them was checked the correlation between the different environments, and the percentage of selected progenies comparing the results obtained by the two assembly approaches data. Statistical analyzes were implemented for the open-souce software R, using the statistical package lme4.
6

Métodos de estimação em regressão logística com efeito aleatório: aplicação em germinação de sementes / Estimation methods in logistic regression with random effects: application in seed germination

Araujo, Gemma Lucia Duboc de 01 February 2012 (has links)
Made available in DSpace on 2015-03-26T13:32:15Z (GMT). No. of bitstreams: 1 texto completo.pdf: 1213757 bytes, checksum: a4899ab14bd6c737501e8ef972e42d9e (MD5) Previous issue date: 2012-02-01 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In logistic mixed models with random effect on intercept allows capturing the effects of sources of variation from the particular characteristics of a group (heterogeneity), deflating the pure error and causing a fluctuation in the model intercept. This inclusion brings complexity in estimation methods and also changes the interpretation of the parameters that, originally given by the odds ratio, is then seen from the median odds ratio. The estimation parameters of a mixed model can be made by many different methods with varying performance, as the Laplace s approximation method, maximum likelihood (ML) and restricted maximum likelihood (REML). The objective of this work was to verify in logistic mixed models with random effects on intercept the consequences in interpretation of parameters, in quality of experiment and in classification of treatment via the median odds ratio, and verify the performance of the estimation methods above cited. The analyzes were performed under simulation and after in set of real data from seeds germination experiment of physic nut (Jatropha curcas L.). Considering the logistic mixed model with random effects on intercept, it was verified that the REML estimation method performed better and that the variance of the random effect affects the performance of any of these methods being evaluated inversely proportional. We suggest further studies to determine more properly the influence of the inflexion points and the effective median level in performance methods. In the experiment to evaluate the seeds germination of physic nut involving roll paper, on paper, on sand and between sand substrates, the inclusion of random effects in logistic model showed considerable heterogeneity in seeds germination in different units of the same substrate. The median odds ratio showed the superiority of the substrate between sand over on paper in seeds germination of physic nut, result similar to that obtained by the Tukey s test. / Em modelos de regressão logística a inclusão do efeito aleatório no intercepto permite capturar os efeitos de fontes de variação provenientes das características particulares de um grupo (heterogeneidade), desinflacionando o erro puro e provocando uma flutuação no intercepto do modelo. Esta inclusão traz complexidade nos métodos de estimação e também muda a interpretação dos parâmetros que, dada originalmente pela razão de chances, passa a ser vista sob o enfoque da razão de chances mediana. A estimação dos parâmetros de um modelo misto pode ser feita por muitos métodos diferentes com desempenho variado, como o método da aproximação de Laplace, da máxima verossimilhança (ML) e da máxima verossimilhança restrita (REML). Assim, o objetivo deste trabalho foi verificar em modelos de regressão logística com efeito aleatório no intercepto as consequências na interpretação dos parâmetros, na qualidade de um experimento e na classificação de tratamentos via razão de chances mediana, e verificar o desempenho dos métodos de estimação acima citados. As análises foram feitas sob simulação e posteriormente num conjunto de dados reais de um experimento com germinação de sementes de pinhão-manso (Jatropha curcas L.). Considerando o modelo de regressão logística com efeito aleatório no intercepto, verificou-se que o método de estimação REML apresentou melhor desempenho e que a variância do efeito aleatório afeta o desempenho de qualquer um dos métodos avaliados sendo estes inversamente proporcionais. Sugerem-se novos estudos para determinar com mais propriedade a influência dos pontos de estabilização e do nível mediano de efetividade na eficiência dos métodos. No experimento de avaliação de germinação de sementes de pinhão-manso envolvendo os substratos rolo de papel, sobre papel, sobre areia e entre areia, a inclusão do efeito aleatório no modelo logístico apontou considerável heterogeneidade na germinação de sementes em unidades diferentes de um mesmo substrato. A razão de chances mediana apontou a superioridade do substrato entre areia em relação a sobre papel na germinação de sementes de pinhão-manso, resultado semelhante ao obtido pelo teste de Tukey.
7

Comparação de métodos de estimação de componentes de variância e parâmetros genéticos considerando o delineamento III aplicado a caracteres quantitativos em milho / Comparison of estimation methods for variance components and genetic parameters considering the Design III applied to quantitative characters in maize

Angela Mello Coelho 09 April 2010 (has links)
Esse trabalho teve como objetivo comparar métodos de estimação de componentes de variância e parâmetros genéticos, considerando tanto o delineamento estatístico fatorial instalado em látice quadrado como o delineamento genético III. Como referência, foram utilizados três conjuntos de dados reais, em melhoramento genético de milho, relativos aos caracteres de produção de grãos (gramas por parcela), altura da folha bandeira ao chão (centímetros) e o número de folhas entre a primeira espiga e o pendão; sendo que a altura da folha bandeira e o número de folhas foram obtidos pela média entre cinco plantas competitivas para cada parcela. O método da Análise da Variância (ANOVA), conforme indicado pelo Delineameno III, foi utilizado na análise dos dados e estimação dos componentes de variância relativos ao modelo matemático, variâncias genéticas, coeficiente de herdabilidade e grau médio de dominância para cada um dos três caracteres estudados. Essas estimativas foram utilizadas na simulação de 1000 conjuntos de dados com características semelhantes a cada um dos conjuntos de dado reais considerados. Os métodos da ANOVA e da máxima verossimilhança restrita (REML) foram utilizados na predição dos parâmetros já mencionados para cada um dos conjuntos de dados simulados dentro de cada caráter. As 1000 estimativas obtidas por cada método, para cada caráter estudado, foram utilizadas no cálculo de estatísticas descritivas (média, desvio-padrão e acurácia relativa) e na montagem de gráficos de Box-plot. Utilizando as informações obtidas a partir das estimativas fornecidas por cada método e em posse dos valores reais que essas estimativas deveriam prever (valor utilizado na simulação dos dados) foi possível comparar ambos os métodos quanto à eficiência das estimativas por eles fornecidas. Ambos os métodos apresentaram características semelhantes na predição da maioria dos componentes de variância relativos ao modelo matemático, sendo que as maiores disparidades se deram para os componentes relativos aos efeitos de progênie (?p2) e as interações entre progênie e linhagem (?pt2) e entre progênie, linhagem e ambiente (?pta2); os quais são os componentes de maior peso no cálculo das variâncias e parâmetros genéticos. O método da ANOVA foi o bastante eficiente na predição de ?p2, sendo que o método da REML se aproxima dos resultados obtidos pelo método da ANOVA conforme diminuem os valores de referência para esse componente; para ?pt2 o método da REML se mostrou mais eficiente conforme maior é o valor de referência, porém, perde eficiência e se aproxima do método da ANOVA conforme o valor de referência do componente diminui. Ambos os métodos se mostraram ineficientes na predição de ?pta2, porém o método da REML foi o menos eficiente. O melhor desempenho do método da ANOVA na predição dos componentes de variância de maior peso no cálculo das variâncias genéticas levou a um melhor desempenho desse método na predição de todos os parâmetros genéticos, com exceção da variância de dominância, a qual depende unicamente de ?pt2. Porém, foi observada uma tendência no método da ANOVA, em média, na superestimação do grau médio de dominância em cerca de 45% do seu valor de referência, independentemente do caráter estudado. / This work aimed to compare estimation methods for variance components and genetic parameters, considering the factorial statistical design set in randomized blocks and the genetic Design III. As reference, three sets of real data were used, on maize genetic improvement, related to the characters: grain yield (grams by plot), plant height, measured from the ground to the °ag leaf in centimeters, and the number of leaves above the uppermost ear. The analysis of variance method (ANOVA), accordingly to the proposed by the Design III, was used on the analysis of the data and estimation of the variance components derived from the mathematical model, genetic variances, heritability and average degree of dominance for each of the studied characters. This estimatives were used on the simulation of 1000 data sets with similar characteristics to the real data analyzed. The ANOVA and restricted maximum likelihood (REML) methods were used on the prediction of the already mentioned parameters for each of the simulated data sets within each character. The 1000 estimatives obtained by each method, for each studied character, were used on the calculation of descriptive statistics (mean, standard deviation and relative accuracy) and for the ¯tting of box-plot graphics. Through the information obtained from the estimatives given by each method and in possession of the actual values that they should predict (values used in the simulation of the data sets) it was possible to compare both methods as to the e±ciency of the estimatives given by them. Both methods presented similar characteristics on the prediction of most of the variance components derived from the mathematical model, being that most di®erences were pertinent to the components related to the e®ects of progeny (¾2 p) and to the interactions between progeny and parental inbred (¾2 pt) and between progeny, parental inbred and environment (¾2 pta); which are the components of greater importance on the calculation of the genetic parameters. The ANOVA method was very e±cient on the prediction of ¾2 p, being that the smaller the reference value for this component, more the REML method approached the results obtained by the ANOVA method; for larger values of ¾2 pt the most e±cient was the REML method, but its e±ciency decayed and approached the ANOVA method for smaller reference values for this component. Both methods were poorly e±cient on the prediction of ¾2 pta, but the REML method was the least e±cient. The better performance of the ANOVA method on the prediction of the variance components of greater importance on the calculation of the genetic variances lead to a better performance of the ANOVA method on the prediction of all genetic parameters, with exception to the dominance variance, which depended solely on ¾2 pt. However, it was observed a tendency on the ANOVA method, in average, on the overestimation of the average degree of dominance of around 45% of the actual reference value, independently of the studied character.
8

Métodos de estimação baseados na função de verossimilhança para modelos lineares elípticos / Estimation methods based on the likelihood function in Elliptical Linear Models

Pérez, Natalia Andrea Milla 14 September 2018 (has links)
O objetivo desta tese é estudar métodos de estimação baseados na função de verossimilhança em modelos mistos lineares elípticos. Derivamos inicialmente os métodos de máxima verossimilhança, máxima verossimilhança restrita e de máxima verossimilhança perfilada modificada para o modelo linear normal. Estendemos os métodos para os modelos lineares elípticos e encontramos diferenças entre as equações resultantes de cada método. A principal motivação deste trabalho é que o método de máxima verossimilhança restrita tem sido aplicado para obter estimadores menos viesados para os componentes de variância-covariância, em contraste com os estimadores de máxima verossimilhança. O método tem sido muito utilizado em modelos com estruturas de variância-covariância como é o caso dos modelos mistos lineares. Assim, procuramos estender o método para os modelos mistos lineares elípticos bem como comparar com outros procedimentos de estimação, máxima verossimilhança e máxima verossimilhança perfilada modificada. Estudamos em particular os modelos mistos lineares com erros t-Student e exponencial potência. / The aim of this thesis is to study estimation methods based on the likelihood functions in elliptical linear mixed models. First, we review the modified profile maximum likelihood and the restricted maximum likelihood methods as well as the traditional maximum likelihood method in normal linear models. Then, we extend the methodologies for elliptical linear models and we compare the estimating equations derived for each method. The main motivation of the work is that the restricted maximum likelihood method has been largely applied in normal linear mixed models in order to reduce the bias of the maximum likelihood variance-component estimators. So, we intend to investigate the possible extension for elliptical linear mixed models as well as to compare with the modified profile maximum likelihood and the maximum likelihood methods. Particular studies for Student-t and power exponential linear mixed models are presented.
9

Numerical Algorithms for Optimization Problems in Genetical Analysis

Mishchenko, Kateryna January 2008 (has links)
<p>The focus of this thesis is on numerical algorithms for efficient solution of QTL analysis problem in genetics.</p><p>Firstly, we consider QTL mapping problems where a standard least-squares model is used for computing the model fit. We develop optimization methods for the local problems in a hybrid global-local optimization scheme for determining the optimal set of QTL locations. Here, the local problems have constant bound constraints and may be non-convex and/or flat in one or more directions. We propose an enhanced quasi-Newton method and also implement several schemes for constrained optimization. The algorithms are adopted to the QTL optimization problems. We show that it is possible to use the new schemes to solve problems with up to 6 QTLs efficiently and accurately, and that the work is reduced with up to two orders magnitude compared to using only global optimization.</p><p>Secondly, we study numerical methods for QTL mapping where variance component estimation and a REML model is used. This results in a non-linear optimization problem for computing the model fit in each set of QTL locations. Here, we compare different optimization schemes and adopt them for the specifics of the problem. The results show that our version of the active set method is efficient and robust, which is not the case for methods used earlier. We also study the matrix operations performed inside the optimization loop, and develop more efficient algorithms for the REML computations. We develop a scheme for reducing the number of objective function evaluations, and we accelerate the computations of the derivatives of the log-likelihood by introducing an efficient scheme for computing the inverse of the variance-covariance matrix and other components of the derivatives of the log-likelihood.</p>
10

Numerical Algorithms for Optimization Problems in Genetical Analysis

Mishchenko, Kateryna January 2008 (has links)
The focus of this thesis is on numerical algorithms for efficient solution of QTL analysis problem in genetics. Firstly, we consider QTL mapping problems where a standard least-squares model is used for computing the model fit. We develop optimization methods for the local problems in a hybrid global-local optimization scheme for determining the optimal set of QTL locations. Here, the local problems have constant bound constraints and may be non-convex and/or flat in one or more directions. We propose an enhanced quasi-Newton method and also implement several schemes for constrained optimization. The algorithms are adopted to the QTL optimization problems. We show that it is possible to use the new schemes to solve problems with up to 6 QTLs efficiently and accurately, and that the work is reduced with up to two orders magnitude compared to using only global optimization. Secondly, we study numerical methods for QTL mapping where variance component estimation and a REML model is used. This results in a non-linear optimization problem for computing the model fit in each set of QTL locations. Here, we compare different optimization schemes and adopt them for the specifics of the problem. The results show that our version of the active set method is efficient and robust, which is not the case for methods used earlier. We also study the matrix operations performed inside the optimization loop, and develop more efficient algorithms for the REML computations. We develop a scheme for reducing the number of objective function evaluations, and we accelerate the computations of the derivatives of the log-likelihood by introducing an efficient scheme for computing the inverse of the variance-covariance matrix and other components of the derivatives of the log-likelihood.

Page generated in 0.0697 seconds