• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 39
  • 23
  • 6
  • 5
  • 5
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 225
  • 217
  • 37
  • 35
  • 35
  • 35
  • 34
  • 34
  • 31
  • 28
  • 27
  • 24
  • 23
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Microsphere-mediated control of embryoid body microenvironments

Carpenedo, Richard L. 05 April 2010 (has links)
Embryonic stem cells (ESCs) hold great promise for treatment of degenerative disorders such as Parkinson's and Alzheimer's disease, diabetes, and cardiovascular disease. The ability of ESCs to differentiate to all somatic cell types suggests that they may serve as a robust cell source for production of differentiated cells for regenerative medicine and other cell-based therapeutics. In order for ESCs to be used effectively in clinical settings, efficient and reproducible differentiation to targeted cell types must be demonstrated. The overall objective of this project was to engineer microenvironmental control over differentiating ESCs through the formation of embryoid bodies (EBs) uniform in size and shape, and through the incorporation of morphogen-containing polymer microspheres within the interior of EBs. The central hypothesis was that morphogen delivery through incorporated polymer microspheres within a uniform population of EBs will induce controlled and uniform differentiation of ESCs. Rotary suspension culture was developed in order to efficiently produce uniform EBs in high yield. Compared to static suspension culture, rotary suspension significantly improved the production of differentiating cells and EBs over the course of 7 days, while simultaneously improving the homogeneity of EB size and shape compared to both hanging drop and static EBs. The diffusive transport properties of EBs formed via rotary suspension were investigated using a fluorescent, cell permeable dye to model the movement of small morphogenic molecules within EBs. Confocal microscopy, cryosections and EB dissociation all demonstrated that the dye was not able to fully penetrate EB, and that the larger EBs at later time points (7 days) retarded dye movement to a greater extent than earlier EBs (days 2 and 4). Polymer microspheres capable of encapsulating morphogenic factors were incorporated into EBs in order to overcome the diffusional limitations of traditional soluble delivery. The size of microspheres, microsphere coating, microsphere to cell ratio, and rotary mixing speed were all observed to influence incorporation within EBs. The use of microsphere-mediated delivery within EBs to direct cell differentiation was examined. Microsphere-mediated delivery of retinoic acid (RA) induced formation of uniquely cystic spheroids with a visceral endoderm layer enveloping a pseudo-stratified columnar epithelium, and with spatial localization of transcriptional profiles similar to the early primitive streak stage of mouse development. Continued differentiation of RA MS EBs in defined media conditions was assessed. Gene expression demonstrated that regular serum enhanced endoderm induction, serum-free media supported ectoderm differentiation, while mesoderm was most prominent in untreated EBs in full serum. In summary, this work has realized a unique approach for stem cell differentiation through modification of the internal microenvironment of ESC spheroids. This novel inside-out method toward engineering EBs demonstrated that the mode of morphogen delivery significantly affected the course of differentiation. These studies provide the basis for ongoing work, which will utilize the choice of microsphere material, coating, and morphogen in order to uniquely study mechanisms of ESC differentiation and achieve unparalleled engineering of the EB microenvironment.
72

The role of retinol dehydrogenase 10 in vitamin A metabolism

Farjo, Krysten Michelle. January 2009 (has links) (PDF)
Thesis (Ph. D.)--University of Oklahoma. / Bibliography: leaves 150-172.
73

Characterization of proteins involved in differentiation and apoptosis of human leukemia and epithelial cancer cells

Borutinskaite, Veronika Viktorija January 2008 (has links)
Today, cancer is understood as an epigenetic as well as a genetic disease. The main epigenetic hallmarks of the cancer cell are DNA methylation and histone modifications. The latter changes may be an optimal target for novel anticancer agents. The main goal of using histone deacetylase inhibitors (HDACIs) would be restoration of gene expression of those tumor-suppressor genes that have been transcriptionally silenced by promoter-associated histone deacetylation. However, HDACIs have pleiotropic effects that we are only just starting to understand. These may also be responsible for the induction of differentiation, cell-cycle arrest and pro-apoptotic effects. There are now so many HDACIs available, with such different chemical structures and biological and biochemical properties, that it is hopeful that at least some of them will succeed, probably in combination with other agents or therapies. In our studies we focussed ourselves on studies some new HDACIs, that can be useful for treating cancers, including leukemia and epithelial cancer. To do that, we used novel HDACIs, like BML-210, and their combination with the differentiation inducer all-trans retinoic acid (ATRA). Cell differentiation and proliferation in general, and specific gene expression require de novo protein synthesis and/or post-translational protein modifications. So, we tried to identify proteins in general and specifically the proteins that could be important for the cell differentiation process, and when and where in the cell the proteins appear. We delineated that HDACIs inhibited leukemia (NB4 and HL-60) cell growth in a time- and dose-dependent way. Moreover, BML-210 blocked HeLa cell growth and promoted apoptosis in a time-dependent way. Combining of BML-210 with ATRA induced a differentiation process in leukemia cell lines that lead to apoptosis. This correlated with cell cycle arrest in G0/G1 stage and changes in expression of cell cycle proteins (p21, p53), transcription factors (NF-κB, Sp1) and their binding activity to consensus or specific promoter sequences. We also assessed histone modifications, i.e. H3 phosphorylation and H4 hyperacetylation due to HDACI, leading to chromatin remodeling and changes in gene transcriptions. We have also studied changes in protein maps caused by HDACIs and differentiation agents, identifying differences for a few proteins due to growth inhibition and induction of differentiation in NB4 cells using BML-210 alone or in combination with ATRA. These proteins are involved in cell proliferation and signal transduction, like Rab, actin and calpain. One of them was alpha-dystrobrevin (α-DB). To further study possible roles of the latter, we determined changes of α-DB protein isoform expression that correlated with induction of differentiation. We thus identified a novel ensemble of α-DB interacting proteins in promyelocytic leukemia cells, including tropomyosin 3, actin, tubulin, RIBA, STAT and others, being important in cytoskeleton reorganization and signal transduction. Using confocal microscopy, we determined that α-DB co-localizes with HSP90 and F-actin in NB4 and HeLa cells. We also revealed that it changes sub-cellular compartment after treatment with ATRA and/or BML-210. α-DB silencing affected F-actin expression in HeLa cells, further supporting the idea that α-DB is involved in cytoskeleton reorganization in cells. Altogether, our results suggest that α−DB may work as a structural protein during proliferation and differentiation processes of human cancer cells. Based on our findings, we suggest that HDACIs, like BML-210, can be promising anticancer agents, especially in leukemia treatment, by inducing apoptosis and regulating proliferation and differentiation through the modulation of histone acetylations and gene expression.
74

The Role of Nuclear Receptor Signaling in Vertebrate Liver Development

Garnaas, Maija Kristine 06 June 2014 (has links)
Proper embryonic development requires precise genetic regulation of cell growth and differentiation. Organogenesis, the origin and formation of internal organs, must be exquisitely choreographed to ensure correct temporal and spatial patterning of functional organs within the developing organism. The liver is a vital organ responsible for hundreds of essential metabolic functions, but the intricate pathways controlling organ specification, differentiation, and positioning have not been fully elucidated. Uncovering the molecular mechanisms involved in hepatogenesis will enhance our understanding of normal liver development as well as inform the design of therapeutics to combat liver disease. Nuclear receptors are evolutionarily recent signal transducers that occupy a special niche in gene regulation, acting as direct connections between a ligand and its downstream transcriptional target. Nuclear receptor signaling governs many physiological processes, however its impact on liver development is not well understood.
75

Estudio de la variabilidad del gen crabp2 en el metabolismo lipídico y de la influencia del ácido retinoico en el endotelio vascular

Salazar Blanco, Juliana 27 January 2010 (has links)
El síndrome metabólico, la hiperlipemia familiar combinada (HLFC), la diabetes mellitus tipo 2 y la dislipemia secundaria al tratamiento del VIH son síndromes que conllevan un elevado riesgo cardiovascular. Comparten alteraciones en el metabolismo de las lipoproteínas y de los hidratos de carbono y en la función endotelial. Los genes implicados en estos procesos están regulados a nivel transcripcional por la vía de señalización de la vitamina A. Asimismo, diferentes estudios de ligamiento para estas patologías identificaron un locus común en la región cromosómica 1q21-23. Estas evidencias nos llevaron a plantear la siguiente hipótesis: alteraciones de la regulación génica modulada por la vitamina A, ya sea de origen genético o inducidas por determinados fármacos, como son el ácido retinoico y sus derivados, causan tanto la hiperlipemia como la disfunción endotelial y por lo tanto, un aumento del riesgo cardiovascular.En la región 1q21-23 se localiza el gen CRABP2 (transportador intracelular del ácido retinoico). En pacientes con HLFC identificamos dos nuevos polimorfismos: rs2236795 y rs74118740, y realizamos un estudio de asociación en tres poblaciones independientes. El gen CRABP2 está asociado con niveles más altos de colesterol LDL. Por otro lado, estudiamos el efecto del ácido retinoico 13-cis sobre la expresión génica en células vasculares endoteliales humanas (HUVEC). A concentraciones farmacológicas se identificaron cambios en los niveles de expresión que pueden suponer un aumento de la adhesión celular y de la eliminación de los remanentes de las lipoproteínas y una modificación del metabolismo de la HDL. Finalmente, en el estudio más detallado de uno de los genes, la prostaciclina sintasa (PGIS), se observó un aumento en la liberación de la prostaglandina I2 (inhibidor de la agregación plaquetar y vasodilatador) debido a la inducción de PGIS. Los resultados obtenidos en esta tesis aportan evidencias de que los procesos regulados por el ácido retinoico participan en estas patologías. / Metabolic syndrome, familial combined hyperlipidemia (FCHL), type 2 diabetes mellitus and dyslipidemia secondary to HIV treatment are syndromes linked to high cardiovascular risk, and alterations in lipoprotein and carbohydrate metabolism, as well as with endothelial function. The genes involved in these processes are regulated at the transcriptional level through the vitamin A signaling pathway. Also, several linkage studies have identified a common locus in 1q21-23. This evidence led us to the following hypothesis: vitamin A modulates gene regulation involved in these alterations either genetic or drug induced (such as retinoic acid and its derivatives); these alterations cause hyperlipidemia and endothelial dysfunction and therefore increase cardiovascular risk. Cellular retinoic acid binding protein II gene (CRABP2) is located in 1q21-23. We identified in FCHL patients two new polymorphisms (rs2236795 and rs74118740), and studied its association with dyslipidemia in three independent populations. CRABP2 gene is associated with higher levels of LDL cholesterol. Furthermore, we studied the effect of 13-cis retinoic acid on gene expression in human vascular endothelial cells (HUVEC). We identified changes in expression levels at pharmacological concentrations that caused an increase in either cell adhesion and lipoprotein remnants removal, and a modification of HDL metabolism. Finally, studying prostacyclin synthase gene in detail (PGIS), we observed an increase in the release of prostaglandin I2 (platelet aggregation inhibitor and vasodilator) due to the induction of PGIS. The results in this thesis provide evidence that the processes regulated by retinoic acid are involved in these pathologies.
76

CYP26B1 limits inappropriate activation of RARgamma by retinoic acid during murine embryogenesis

Pennimpede, Tracie 07 November 2012 (has links)
Proper embryonic patterning requires precise spatio-temporal regulation of retinoic acid (RA) activity. Morphogenesis can be regulated at the level of RA distribution, mainly via its synthesis and catabolism by the RALDH and CYP26 enzymes respectively, and at the level of RA-mediated transcription through activation of its cognate nuclear receptor, the retinoic acid receptors (RARs) α, β, and γ. Loss of Cyp26b1 leads to increased local levels of RA in tissues such as the limb and craniofacial structures, and results in neonatal lethality. Visible gross phenotypic defects in neonates include phocomelia (shortening of the limbs), adactyly (missing digits), micrognathia (shortened lower jaw), and open eyes at birth. In addition, these embryos exhibit cleft palate and have a paucity of vibrissal (whisker) and pelage (hair) follicles. We have previously shown that ablating the gene encoding RARγ in a Cyp26a1-null background was able to rescue the caudal abnormalities associated with improper RA exposure in these embryos by limiting aberrant RA signalling, and thus rescuing expression domains of target genes involved in caudal development. I show here that ablating Rarg in a Cyp26b1-null background is able to partially rescue the defects associated with loss of CYP26B1. These include a reduction in the severity of limb defects, rescued vibrissae, fused eyelids, and recovered aspects of axial skeletal development. This compound-null murine model illustrates that RARγ plays a specific role in transducing the RA signal within tissues that are affected by the loss of CYP26B1. Further molecular analysis of the pathways responsible for directing limb bud outgrowth and eyelid fusion provided insight into pathways regulated by RARγ in these rescued tissues. / Thesis (Ph.D, Pathology & Molecular Medicine) -- Queen's University, 2010-04-01 15:38:52.05
77

Bio-engineering of muscle tissue in culture: influence of neural, cartilage or kidney cells and the effect of retinoic acid on muscle cell growth.

Grey, Matthew 23 December 2011 (has links)
Skeletal muscle fibers develop from mono-nucleated myoblasts that fuse to form multinucleated myotubes. In embryonic growth, this process occurs concurrently with the formation of the early cartilaginous skeleton and innervation by migrating nerve cells. The goal of my research was to explore co-culture conditions that encourage proliferation, differentiation and maturation of myoblasts to myotubes. A variety of co-culture experiments tested the influence of three basic tissues types (murine neural, cartilage and kidney primary cells) on the formation of myotubes in the C2C12 myoblast cell line. Three plating strategies were used: 1) C2C12 myoblasts were plated first, grown for two days before the addition of a second cell type; 2) both cell types were mixed and plated simultaneously; and 3) C2C12 myoblasts were added to a pre-established, 10 day old neural, cartilage or kidney cell culture. In addition, a parallel set of experiments were treated with all-trans retinoic acid, a potent myogenic activator and embryonic patterning signaling molecule. Myotube formation was consistently highest in C2C12 and cartilage co-cultures across all three plating strategies with a 277% increase in myotube area compared to controls. These effects were further enhanced when grown in 1 µg/mL all-trans retinoic acid. Co-cultures with neural or kidney cells consistently exhibited fewer myotubes when compared to C2C12 controls. It is postulated that the enhanced muscle growth in cartilage co-cultures was due to a chondrocyte-secreted extracellular matrix that facilitated myotube attachment to the substratum. / Graduate
78

Spatial control of inner ear neurogenesis by retinoic acid, Tbx1 and her genes

Radosevic, Marija 12 July 2011 (has links)
Sensory neurons are key mediators of the transduction of external stimuli from the ear to the brain, essential for the sense of balance and hearing. Understanding when, where and how the sensory nervous system is assembled during development can provide insights on deafness and balance disorders. Here, I show in zebrafish that Her9 transcription factor is a key element in the regulation of the otic neurogenesis. Loss of Her9 function leads to the ectopic expression of neurogenic genes neurod and neurod4. Moreover, I show that Her9 acts downstream of Tbx1, and both genes are activated by retinoic acid signaling emanating from the paraxial mesoderm and negatively regulated by Hedgehog signaling. Altogether, the data demonstrates a role of retinoic acid in axial patterning and the establishment of a neurogenic domain through Tbx1 and Her9. At later stages, retinoic acid has an additional role by regulating neuronal differentiation in the statoacoustic ganglion. / Les neurones sensorials de l’oïda interna són mediadores claus en la transducció dels estímuls externs des de l’oïda interna al cervell. Entendre a on, quan i com el sistema nerviós sensorial s’organitza durant el desenvolupament embrionari pot ajudar en l’estudi de les malalties neurosensorials. En el present treball, mostro en peix zebra que el factor de transcripció Her9 és un element clau en el control de la neurogènesi òtica i que Her9 es troba sota el control directe del factor Tbx1. A més, ambdos factors estan regulats de manera positva per la via de senyalització de l’àcid retinoic i negativament per la vía de hedgehog. En resum, la tesis demostra un paper de l’àcid retinoic en la regionalització axial del primordi òtic en l’eix anteroposterior i l’establiment d’un domini neurogènic a través de Tbx1 i Her9. En estadis tardans, l’àcid retinoic regula la diferenciació neuronal en el gangli estato-acústic.
79

Retinoids in the modulation of vascular inflammation /

Gidlöf, Andreas, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2005. / Härtill 5 uppsatser.
80

Analysis of retinoid signaling and metabolism in urologic cancers /

Touma, Sue Ellen. January 2009 (has links)
Thesis (Ph. D.)--Cornell University, January, 2009. / Vita. Includes bibliographical references.

Page generated in 0.1773 seconds