• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 21
  • 21
  • 9
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wake structure of a transversely rotating sphere at moderate Reynolds numbers

Giacobello, Matteo January 2005 (has links)
Over the last century, the problem of a viscous flow past a sphere has received on-going attention due to its many engineering applications. These include combustion processes, sediment transport processes and atmospheric flow problems, where the sphere serves as a good model for more general bluff body particles. In these environments, particles may be subjected to both translational and rotational velocities. The objective of this study was to investigate the effect that sphere rotation, about an axis transverse to the freestream flow, has on the characteristics or the vertical wake structure and the forces exerted on the sphere. That was achieved by solving the time-dependant, incompressible Navier Stokes equations, using a highly accurate Fourier Chebyshev spectral collation method.
2

Exponential flags in the wind

Brunelle, Anne-Marie January 1987 (has links)
1 volume
3

The boundary element method applied to viscous and vortex shedding flows around cylinders

Farrant, Tim January 1998 (has links)
No description available.
4

Particle tracking in separated flows

Siu, Yam Wing January 1996 (has links)
No description available.
5

Aerodynamics of flexible membranes

Rojratsirikul, Pinunta January 2010 (has links)
Membrane wings are used both in nature and small aircraft as lifting surfaces. For these low Reynolds number applications, separated flows are common and are the main sources of unsteadiness. Adaptability of the membrane wing is known to improve the vehicle performance; and membrane compliancy in animal wings such as bats contributes significantly to their astonishing flights. Yet, the aerodynamic characteristics of the membranes are still largely unknown. An experimental study of flexible membranes at low Reynolds numbers was undertaken. Two-dimensional membrane aerofoils were investigated, with particular focus on the unsteady aspects. Membrane deformation, flow fields and fluid-structure interaction were examined over a range of angles of attack and freestream velocities. A comprehensive study of the effect of membrane pre-strain and excess length was carried out. Low aspect ratio membrane wings were investigated for rectangular and nonslender delta wings. The amplitude and mode of membrane vibration are found to be dependent mainly on the location and the unsteadiness level of the shear layer. The results indicate a strong coupling of unsteady flow with the membrane oscillation. With increasing Reynolds number, the separated shear layer becomes more energetic and closer to the surface. The membrane not only has smaller size of the separation region compared to a rigid aerofoil, but also excites the roll-up of large vortices which might lead to delayed stall. The membrane aerofoils with excess length exhibit higher vibration modes, earlier roll-up and smaller separated region, compared to the ones with pre-strain. This smaller separated region delays the onset of membrane vibrations to a larger incidence. For the low aspect ratio membrane wings, the combination of tip vortices and leading-edge vortex shedding results in a mixture of streamwise and spanwise vibrational modes. The flexibility benefits the rectangular wing more than the delta wing by increasing the maximum normal force and the force slope by a larger amount. Similar to the two-dimensional membrane aerofoils, the Strouhal numbers of the oscillations are on the order of unity, and there is a coupling with the wake instabilities in the post-stall region. Stronger tip vortices on membrane wings contribute significantly to total lift enhancement.
6

Enhancement of liquids mixing using active pulsation in the laminar flow regime

Xia, Qingfeng January 2012 (has links)
Both the need for mixing highly viscous liquids more effectively and the advance of micro-scale applications urge the development of technologies for liquid mixing at low Reynolds numbers. However, currently engineering designs which offer effective jet mixing without structural and operational complexity are still lacking. In this project, the method of enhancing liquid mixing using active pulsation in the laminar flow regime is explored experimentally. This work started by improving the inline pulsation mechanism in an existing confined jet configuration whereby the fluid from a primary planar jet and two surrounding secondary planar jets are pulsated by active fluid injection control via solenoid valves in the out-of-phase mode. The influence of Reynolds number, pulsation modes, frequency, duty cycle on mixing is then investigated using PLIF and PIV experimental techniques. A combination of different mixing mechanisms is found to be at play, including sequential segmentation, shearing and stretching, vortex entrainment and breakup. At a given net flow Reynolds number, an optimal frequency exists which scales approximately with a Strouhal number (Str=fh/Uj) about 1. This optimal frequency reflects the compromise of the vorticity strength and segmentation length. Furthermore, a lower duty cycle is found to produce a better mixing due to a resultant higher instantaneous Reynolds number in the jet flow. Overall, the improvement of the rig has resulted in an excellent mixing being achieved at a net flow Reynolds number of 166 which is at least order of magnitude lower than in the original rig. In order to achieve fast laminar mixing at even lower Reynolds numbers, the active pulsation mechanism using lateral synthetic jet pairs is designed and tested at a net flow Reynolds number ranging from 2 to 166 at which a good mixing is achieved. The influence of actuation frequency and amplitude, and different jet configuration is evaluated using PLIF and PIV experimental techniques. At the mediate to high Reynolds numbers tested in this study, the interaction and subsequent breakup of vortices play a dominant role in provoking mixing. In contrast, at the lower end of Reynolds numbers the strength of vortex rollup is weakened significantly and as a result folding and shearing of sequential segments provide the main mechanism for mixing. Therefore it is essential to use multiple lateral synthetic jet pairs to achieve good mixing in both mixing channel and synthetic jet cavity at this Reynolds number. It is found that an increase in both the actuation magnitude and frequency improves mixing, thereby the velocity ratio represents the relative strength of the pulsation velocity to the mean flow velocity is crucial for mixing enhancement. In order to identify actuation conditions for good mixing, a regression fit is conducted for the correlation between the dimensionless parameters, net flow Reynolds number Ren, stroke length L and Strouhal number Str. Over the tested range of the net flow Reynolds number from 2 to 83, the relationship of parameters is found and the velocity ratio at least above 2.0. Suggested by the comparatively small exponent, net flow Reynolds number is less influential than stroke length and Strouhal number. The success in obtaining excellent mixing using lateral synthetic jet pairs at low Reynolds numbers in the present work has opened up a promising prospect of their applications in various scenarios, including mixing of highly viscous liquids at macro-scale and micro-mixing.
7

Viscous Flow in Multiparticle Systems at Intermediate Reynolds Numbers

LeClair, Brian 08 1900 (has links)
<p> This dissertation describes an extention of fluid mechanical data for flow around blunt objects in the intermediate Reynolds Number regime using the digital computer. The aim was to develop fluid mechanical models to predict the flow phenomena around a blunt object in an infinite fluid and a multiparticle system. </p> <p> The dissertation is divided into two self-contained parts. Part I describes the flow around a blunt object in an infinite fluid media. The flow around a solid sphere in steady flow, a solid sphere in accelerating flow and a spherical liquid drop in steady flow are described. The study demonstrates that the actual drag becomes asymptotic with the Oseen drag relation as the Reynold Number approaches zero. Secondly, the study demonstrates that acceleration from rest of a sphere under the influence of gravity can be predicted precisely by solving the fluid mechanical equations. Finally the flow in and around a circulating spherical raindrop is presented. </p> <p> Part II describes the extension of the cell model for multiparticle systems in the creeping flow regime to the intermediate Reynolds Number regime. Three cases were studied: beds of solid spheres, cylinder bundles in cross-flow and gas bubble swarms. Theoretical predictions of pressure drop through the assemblage and material or heat transport were obtained. Comparison of these predictions with experimental data has shown that the approach provides an excel lent first approximation for predicting multiparticle phenomena. </p> / Thesis / Doctor of Philosophy (PhD)
8

Locomotion et écoulement dans les fluides complexes confinés / Locomotion and Flow in complex and confined fluids

Jibuti, Levan 21 October 2011 (has links)
Cette thèse est consacrée à l'étude de la dynamique et de la rhéologie des fluides complexes. Nous utilisons une méthode de simulation numérique à trois dimensions. Les systèmes que nous étudions ici sont des suspensions de micro-nageurs actifs, des suspensions de particules sphériques rigides en présence d'un champ externe auquel elles sont sensibles et de la dynamique de suspensions de particules sphériques et confinées en cisaillement. Les Micro-nageurs sont les objets microscopiques qui se propulsent dans un fluide et ils sont omniprésents dans la nature. Un exemple commun de micro-nageurs est la micro-algue textit{Chlamydomonas} . Un des buts principaux de cette thèse est de comprendre l'effet de la motilité de ces micro-organismes sur les propriétés macroscopiques globales de la suspension, telles que la viscosité effective pour expliquer les observations expérimentales. Nous avons élaboré différents modèles de suspensions de textit{Chlamydomonas} et effectué des simulations numériques utilisant la version 3D de la dynamique des particules fluides (FPD) (méthode expliquée dans cette thèse). Les résultats de nos simulations numériques ont été présentés et discutés à la lumière des observations expérimentales. Un des modèles proposés intègre tous les phénomènes observés expérimentalement et sont applicables à d'autres types de suspensions de micro-nageurs. Cette thèse consacre également un chapitre sur les effets du confinement sur la dynamique de cisaillement des suspensions diluées de particules sphériques. Nous avons constaté que dans la géométrie confinée, la vitesse angulaire des particules diminue par rapport à celle imposée par l'écoulement de cisaillement. La vitesse angulaire des particules diminue également lorsque la particule est proche d'une paroi unique et la vitesse de translation de la particule par rapport à la vitesse de la paroi diminue. Un autre objectif de cette thèse est d'étudier les suspensions à viscosité effective ajustable. Nous avons mené une étude numérique sur des suspensions de particules sphériques en présence d'un couple externe. Nous avons montré que le changement de vitesse angulaire des particules due à l'application d'un couple externe est suffisante pour modifier fortement la viscosité de la suspension. Basée sur des simulations numériques, une formule semi-empirique a été proposée pour la viscosité des suspensions de particules sphériques valables jusqu'à 40% de concentration. Nous avons également montré que la 2ème loi de Faxén peut être étendue par une expression empirique pour de grandes concentrations. / This work is dedicated to the study of dynamics and rheology of the complex fluids. We use three dimensional numerical simulations. The systems we study here are: suspensions of biological active micro-swimmers, suspensions of rigid spherical particles in presence of an external field and the dynamics of sheared confined spherical particles. Micro-swimmers are the microscopic objects that propel themselves through a fluid and they are ubiquitous in nature. A common example of micro-swimmers is the textit{Chlamydomonas} . One of the main goal of this thesis is to understand the effect of self-motility of these micro-organisms on the global macroscopic properties of the fluid, such as the effective viscosity to explain experimental observations. We elaborated different models for textit{Chlamydomonas} suspensions and conducted numerical simulations using the 3D version of the Fluid Particle Dynamics method (explained in this thesis). The results of our numerical simulations has been shown and discussed in light of the experimental observations. One of the proposed models incorporates all experimentally observed phenomena and is expendable for other types of micro-swimmer suspensions. This thesis is also dealing with the effects of confinement on the dynamics of sheared spherical particles. We found that in confined geometry, angular velocity of sheared particles decreases compared to the one imposed by the shear flow. The angular velocity of the particles decreases also when the particle are close to a single wall and the translational velocity of the particles changes so that the difference between velocity of the particle and the velocity of the wall decreases. Another objective of this work is to study suspensions with tunable effective viscosity. We conducted a numerical investigation of sheared spherical particle suspensions in presence of an external torque. We showed that the change of particle angular velocity with an external torque is sufficient to strongly change the effective viscosity of the suspension. Based on numerical simulations, a semi-empirical formula has been proposed for the effective viscosity of spherical particles suspensions valid up to 40% concentration. We also showed that a modified second Faxén law can be equivalently established for large concentrations.
9

Propulsion characteristics and Visual Servo Control of Scaled-up Helical Microswimmers / Caractéristiques de propulsion et commande boucle fermée par retour visuel de l'orientation de micronageurs hélicoïdaux

Xu, Tiantian 13 March 2014 (has links)
L'utilisation de micronageurs hélicoidaux capables de se mouvoir dans des liquides à faible nombre de Reynolds trouve son intérêt dans beaucoup d'applications: de tâches in-vitro dans des laboratoires sur puce (transport et tri de micro-objets; assemblage de micro-composants...), à des applications in-vivo en médecine mini-invasive (livraison interne et ciblée de médicaments, curiethérapie, thermothérapie...); grâce à leur dimensions microscopiques et agilité permettant l'accès à des endroits normalement très restreints. Plusieurs types de nageurs hélicoïdaux actionnés magnétiquement possédant divers paramètres géométriques, formes de tête et positions de la partie magnétique ont été proposés dans de précédents travaux. Cependant, l'influence de tous ces paramètres n'a pas clairement été étudiée. À notre connaissance, les micronageurs hélicoïdaux dans l'état de l'art sont principalement contrôlés en boucle ouverte, en raison de la complexité de la commande du champ magnétique actionnant la propulsion, et du nombre limité de retours ayant des critères satisfaisants. Cette thèse vise à comparer les performances de déplacement de nageurs hélicoïdaux avec des conceptions différentes a n d'améliorer leur design et de les caractériser et réaliser un asservissement visuel de nageur hélicoïdal. Pour se faire, des nageurs hélicoïdaux de tailles millimétriques ont été conçus et sont mis en conditions à faible nombre de Reynolds. La conception de ces "millinageurs" servira de base à la conception de micronageurs. Une commande boucle fermée par retour visuel de l'orientation d'un micronageur hélicoïdal dans un espace 3D, et un suivi de trajectoires sur plan horizontal ont été effectués. Cette méthode de commande sera par la suite appliquée à des micronageurs hélicoïdaux. / Helical microswimmers capable of propulsion at low Reynolds numbers have been proposed for numerous applications, ranging from in vitro tasks on lab-on-a-chip (e.g. transporting and sorting micro objects; mechanical components micro assembly...) to in vivo applications for minimally invasive medicine (e.g. targeted drug delivery; brachytherapy; hyperthermia...), due to their micro sizes and accessibility to tiny and clustered environments. Several kinds of magnetically actuated helical swimmers with di erent geometry parameters, head shapes, and magnetic positioning have been proposed in prior works. However, the in uence of the geometry parameters, the head shape and the magnetic positioning (head, coated tail...) has not been clearly studied. As far as we know, the existing helical microswimmers are primarily open-loop controlled, due to the complexity of the control of the magnetic eld actuating the helical propulsion, and the limited number of feedback options processing the required precision. This thesis aims to compare the swimming performances of helical swimmers with di erent designs to further improve their design and to characterize their swimming properties and realize a visual servo control of helical swimmers. Scaled-up helical microswimmers at the millimeter scale are designed and swim at low Reynolds numbers. The design of these scaled-up helical microswimmers can be a guideline for the micro-fabrication of helical microswimmers. A visual servo control of the scaled-up helical microswimmer orientation in the 3D space, and a path following on the horizontal plane have been realized. The control method will be applied on helical microswimmers in future works.
10

Thermal enhancement strategies for fluid jets impinging on a heated surface

King, Andrew James Campbell January 2007 (has links)
This research investigation examines the thermal behaviour of single and arrays of fluid jets impinging at heated surfaces, and formulates enhancement schemes for the jet impingement heat transfer processes for high-intensity cooling applications. The proposed techniques are numerically modelled and analysed over a wide parametric range to identify flow characteristics leading to thermal enhancement and optimum performance. The first scheme applies to a single fluid jet and incorporates a protruding object at the impingement surface to improve heat transfer. In this, a conical protrusion of high thermal conductivity is attached to the heated surface directly beneath the jet. Three different aspect ratios of 0.5, 1 and 2 are investigated for the protrusion while the inclusion of a fillet at the base of the cone is also studied. Jet Reynolds numbers between 100 and 30,000 are modelled. The observed thermal performance is compared with a reference case having no surface attachment. With this arrangement, the heat transfer rate typically varies between 10 and 40 percent above the reference case although depending on certain parametric combinations, the heat transfer may increase above or decrease below the reference performance. The highest indicated increase in heat transfer is about 90 percent while 15 percent below is the lowest. Careful selection of cone surface profile creates potential for further thermal enhancement. / The second scheme applies to a single fluid jet and incorporates a recess in the impingement surface to improve heat transfer. In this, a cylindrical cavity is introduced to the surface beneath the jet into which the fluid jet impinges. The effects of the cavity on heat transfer are examined for a number of different cavity diameters, cavity depths and jet discharge heights wherein a surface without a cavity is taken as the reference surface. Cavity diameters of 2, 3 and 4 times the jet diameter are investigated at cavity depths between zero and 4 times the jet diameter. Jet discharge heights range between 2 jet diameters above the reference surface to 2 jet diameters below the reference surface. The jet Reynolds number is varied between 100 and 30,000. With this enhancement technique, increases in heat transfer rates of up to 45 percent are observed when compared to the reference performance. The thermal performance of fluid jet arrays is examined by altering square or hexagonal array configurations to identify flow characteristics leading to optimal heat transfer rates. For this, the jet to jet spacing is varied between 1.5 and 7 times the jet diameter while the jet to surface height is varied between 2 and 6 times the jet diameter. Jet Reynolds numbers between 100 and 30,000 are investigated. For each configuration, a critical jet-to-jet spacing is identified below which the heat transfer is observed to reduce significantly. Correlations for the expected heat transfer for a square or hexagonal array are presented in terms of the jet to jet spacing, jet height and jet Reynolds number.

Page generated in 0.0781 seconds