• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 39
  • 39
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Papel da O-glicosilação com N-acetil-glucosamina (O-GlcNAc) nas alterações vasculares associadas a altos níveis de endotelina-1 / O-GlcNAcylation contributes to the vascular effects of ET-1 via activation of RhoA/Rho-kinase pathway.

Victor Vitorino Lima 30 May 2012 (has links)
LIMA, V.V. Papel da O-glicosilação com N-acetil-glucosamina (O-GlcNAc) nas alterações vasculares associadas a altos níveis de endotelina-1. 2012. 106 f. Tese (Doutorado) - Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo, Ribeirão Preto, 2012. A O-Glicosilação com N-acetilglucosamina (O-GlcNAc) é uma modificação pós-traducional altamente dinâmica que modula diversas vias de sinalização. O processo de O-GlcNAc é controlado por duas enzimas: UDP-NAc transferase (OGT) e O-GlcNAcase (OGA). A enzima OGT catalisa a adição de N-acetil-glucosamina no grupo hidroxila dos resíduos de serina ou treonina das proteínas alvo. Por outro lado, a OGA catalisa a remoção hidrolítica de O-GlcNAc das proteínas modificadas. Proteínas com importante papel na função vascular são alvos da O-GlcNAc, e recentemente demonstramos que a expressão de proteínas modificadas com O-GlcNAc está aumentada em artérias de ratos com hipertensão DOCA-sal. Considerando que a produção de endotelina-1 (ET-1) encontra-se aumentada na vasculatura de diferentes modelos de hipertensão sensível ao sal, nós investigamos a hipótese de que o aumento da resposta vascular contrátil induzida pela ET-1 é decorrente da hiperativação da via RhoA/Rho cinase, mediada pelo aumento dos níveis de proteínas O-GlcNAc. Durante a realização de nossos experimentos, demonstramos que a exposição de aortas ou células do músculo liso vascular (CMLV) à ET-1 (0,1 mol/L) aumenta a vasoconstrição para fenilefrina (PE) e serotonina, bem como os níveis de proteínas O-GlcNAc, além de modular a expressão das enzimas OGT e OGA. A infusão de ET-1 (2 pmol/Kg/min) por 14 dias também promoveu aumento dos níveis vasculares de proteínas O-GlcNAc e da resposta contrátil da aorta à PE. O tratamento de aortas ou CMLV com ST045849 (inibidor da OGT, 100 µMol/L) ou atrasentan (antagonista do receptor ETA, 1 mol/L), preveniu o aumento dos níveis de proteínas O-GlcNAc induzido pela ET-1. Além disso, o tratamento com atrasentan por cinco semanas (atrasentan - 5 mg/kg/dia, por via oral) normalizou os níveis vasculares de proteínas O-GlcNAc em ratos DOCA-sal e também diminuiu a resposta contrátil da aorta à PE. A transfecção de CMLV com siRNA para OGT aboliu o efeito da ET-1 sobre os níveis de proteínas O-GlcNAc. Considerando que o aumento nas contrações da aorta à PE, após o tratamento com PUGNAc (inibidor seletivo da OGA) ou ET-1, foi abolido pelo inibidor de Rho cinase (Y-27632, 1 mol/L) e que a ET-1 ativa a via de sinalização da RhoA/Rho cinase, decidimos investigar se aumento dos níveis de proteínas O-GlcNAc ativa/modula a via RhoA/Rho cinase. A incubação de CMLV com ET-1 não mudou a expressão protéica das formas totais de ROCK-, ROCK-, CPI-17, MYPT-1 ou MLC, porém aumentou a expressão das formas fosforiladas da MYPT-1 (Tre853), CPI-17 (Tre38) e MLC (Tre18/Ser19). Estes efeitos não foram observados quando CMLV foram tratadas com ST045849, atrasentan ou previamente transfectadas com o siRNA para OGT. Também observamos que a ET-1 aumentou a atividade e a expressão protéica da RhoA, assim como a expressão da PDZ-Rho GEF e p115-Rho GEF. Este efeito foi abolido, quando CMLV foram previamente transfectadas com siRNA para OGT, incubadas com o inibidor da OGT ou tratadas com o antagonista de receptores ETA. Em conclusão, nossos dados fornecem evidências de que a ET-1 aumenta os níveis vasculares de proteínas O-GlcNAc, resultando na ativação da via RhoA/Rho cinase e no aumento da reatividade vascular. É possível que o aumento de proteínas O-GlcNAc, induzido pela ET-1, possa representar um novo mecanismo para a disfunção vascular induzida por este potente peptídeo. / LIMA, V.V. O-GlcNAcylation contributes to the vascular effects of ET-1 via activation of RhoA/Rho-kinase pathway. 2012. 106 f. Ph.D. Thesis - Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo, Ribeirão Preto, 2012. Glycosylation with O-linked -N-acetylglucosamine (O-GlcNAc) is a highly dynamic post-translational modification that plays a key role in signal transduction pathways. The cycling of O-GlcNAc is controlled by two enzymes: UDP-NAc transferase (OGT) and O-GlcNAcase (OGA). Whereas OGT catalyses the addition of O-GlcNAc to the hydroxyl group of serine and threonine residues of a target protein, OGA catalyses the hydrolytic cleavage of O-GlcNAc from post-translationally-modified target. Proteins with an important role in vascular function are targets for O-GlcNAcylation and we have recently shown that the vascular content of O-GlcNAc-proteins is augmented in arteries from DOCA-salt rats. Since endothelin-1 (ET-1) production is increased in the vasculature of salt-sensitive forms of hypertension, we tested the hypothesis that O-GlcNAc contributes to the vascular effects of ET-1, via activation of the RhoA/Rho-kinase pathway. Incubation of rat aortas or vascular smooth muscle cells (VSMCs) with ET-1 (0,1 mol/L) produced a time-dependent increase in O-GlcNAc levels, decreased expression of O-GlcNAc transferase (OGT) and -N-acetylglucosaminidase (OGA), key enzymes in the O-GlcNAcylation process. Overnight treatment of aortas with ET-1 increased phenylephrine (PE) vasoconstriction. ET-1 effects were not observed when vessels were previously instilled with anti-OGT antibody or after incubation with an OGT inhibitor (ST045849, 100 mol/L). Aortas from DOCA-salt rats, which exhibit increased pre-pro-ET-1 expression, displayed increased contractions to PE and augmented levels of O-GlcNAc proteins. Treatment of DOCA-salt rats with atrasentan (ETA antagonist) abrogated augmented vascular levels of O-GlcNAc and prevented increased PE vasoconstriction. Aortas from rats chronically infused with low rate of ET-1 (2 pmol/Kg/min, 14days) exhibited increased O-GlcNAc-proteins and enhanced PE responses. These changes are similar to those induced by PUGNAc (OGA inhibitor which increases O-GlcNAc levels). ET-1 as well as PUGNAc augmented contractions to PE in endothelium-denuded rat aortas, an effect that was abolished by the Rho kinase inhibitor Y-27632 (1 mol/L). Incubation of VSMCs with ET-1 did not change expression of ROCK-, ROCK-, CPI-17, MYPT-1 or MLC, but increased phosphorylation levels of MYPT-1 (Thr853), CPI-17 (Thr38) and MLC (Thr18/Ser19). The effects of ET-1 on MYPT-1, CPI-17 and MLC phosphorylation were prevented by the OGT inhibitor and OGT siRNA transfection, as well as by atrasentan. ET-1 increased RhoA expression and activity in VSMCs, and this effect was abolished by OGT siRNA transfection and OGT inhibition. ET-1 also augmented expression of PDZ-Rho GEF and p115-Rho GEF in VSMCs and this was prevented by OGT siRNA, OGT inhibition (ST045849) and ETA receptor blockade (atrasentan, 1 mol/L). In conclusion, our data strongly suggest that ET-1 augments O-GlcNAc levels and this modification contributes to increase vascular contractile responses, via activation of the RhoA/Rho-kinase pathway. We speculate that the modulatory effect of ET-1 on O-GlcNAcylation may represent a novel mechanism underlying the vascular effects of the peptide.
32

Mécanismes et Thérapies des Surdités Neurosensorielles

Poirrier, Anne-Lise 14 September 2010 (has links)
Au cours de ces années de Doctorat, nous avons étudié les effets ototoxiques de certains médicaments et les moyens de prévenir les surdités neuro-sensorielles quils peuvent induire. Parmi ces molécules, nous nous sommes concentrés sur les plus couramment utilisées en pratique clinique : les antibiotiques de la famille des aminoglycosides et le cisplatine, un agent anti-cancéreux. Lintroduction de notre travail replace la surdité dans son contexte de santé publique. En particulier, nous décrivons pourquoi les médicaments ototoxiques sont utilisés et dans quelles circonstances. Nous présentons la structure de loreille interne et nous tentons dexpliquer sa vulnérabilité aux molécules ototoxiques. Nous abordons ensuite les moyens de prévention et/ou de traitement de ces atteintes neuro-sensorielles pharmaco-induites. Outre les moyens classiques de prévention, que sont les facteurs trophiques et les antioxydants, nous décrivons de nouvelles voies dapproche que sont les voies de signalisation impliquant la protéine kinase C ou la cascade dactivation RhoA/ROCK. La présentation de notre travail original sarticule autour de deux parties. Dans la première partie, nous rapportons les résultats obtenus au cours de notre étude de la toxicité des aminoglycosides et du cisplatine chez la souris et le cobaye in vivo. Nous avons mis en évidence une différence de vulnérabilité significative entre ces deux espèces face à lagression ototoxique. Cette différence existe au niveau fonctionnel, mis en évidence par létude des potentiels évoqués auditifs, et au niveau anatomique, étudié en histologie et en immunohistochimie. Nous en discutons les implications en recherche et en pratique clinique. Dans la seconde partie, nous étudions les moyens de prévenir cette surdité in vivo et in vitro. Nous avons utilisé un modèle de surdité par aminoglycoside chez le cobaye. Nous avons testé et validé une technique de perfusion intra-cochléaire in vivo. Nous avons observé les effets de deux molécules expérimentales : la Bryostatine 1, un activateur de la protéine kinase C, et un inhibiteur de la voir RhoA-ROCK. Leffet protecteur de ces molécules est actuellement limité au ganglion spiral, dont la survie est essentielle à tout traitement dimplantation prothétique et de réadaptation. Nous discutons des perspectives en médecine humaine dans notre conclusion. In this work, we focused our attention on the effects of main ototoxic drugs i.e. aminoglycosides and cisplatin in mammals. We identified new avenues for the prevention of this toxicity. In the introduction, we described how and why ototoxic drugs are used. We then described potential otoprotective strategies in neurosensory deafness. Among them, trophic factors and antioxidant molecules have been widely used. New otoprotective approaches do exist, implying the protein kinase C or RhoA/ROCK signalling. Our original work was presented in two parts. In the first part, we reported the in vivo effects of aminoglycosides and cisplatin in two mammalian species: mice and guinea pigs. Contrarily to guinea pigs, evidence of mice resistance to ototoxicity was found at a functional level, assessed by auditory brainstem responses, and at an anatomical level, studied by immunohistochemistry. We discussed the implication of such differences in research and in clinical practice. In the second part, we studied the effect of two potential otoprotective molecules: Bryostatine 1, an activator of the protein kinase C, and Y-27632, a Rho kinase inhibitor. We showed that these molecules are protecting spiral ganglion neurons both in vitro and in vivo. Survival of spiral ganglion neurons is crucial in the management and rehabilitation of deafness. The potential perspectives of these results in human medicine were discussed.
33

Identification of Novel Roles for the Survival Motor Neuron (Smn) Protein: Implications on Spinal Muscular Atrophy (SMA) Pathogenesis and Therapy

Bowerman, Melissa 18 April 2012 (has links)
Spinal muscular atrophy (SMA) is the leading genetic cause of death of young children. It is an autosomal recessive disease caused by the mutation and/or the deletion within the ubiquitously expressed survival motor neuron 1 (SMN1) gene. SMA pathology is characterized by spinal cord motor neuron degeneration, neuromuscular junction (NMJ) defects and muscular atrophy. Upon disease onset, SMA patients progressively become paralyzed and in the most severe cases, they die due to respiratory complications. Over the years, it has become clear that SMN is a multi-functional protein with important roles in small nuclear ribonucleoprotein (snRNP) assembly, RNA metabolism, axonal outgrowth and pathfinding, mRNA transport as well as in the functional development of NMJs, skeletal muscle and cardiac muscle. However, it remains unclear which of these functions, and the respective perturbed molecular pathways, dictate SMA pathogenesis. Here, we have established Smn-depleted PC12 cells and an intermediate SMA mouse model to characterize a role for Smn in the regulation of actin cytoskeleton dynamics. We find that Smn depletion results in the increased expression of profilin IIa and active RhoA (RhoA-GTP) as well as the decreased expression of plastin 3 and Cdc42. Importantly, the inhibition of rho-kinase (ROCK), a direct downstream regulator of RhoA, significantly increased the lifespan of SMA mice and shows beneficial potential as a therapeutic strategy for SMA. In an addition, we have uncovered a muscle- and motor neuron-independent role for SMN in the regulation of pancreatic development and glucose metabolism in SMA mice and type 1 SMA patients. This finding highlights the importance of combining a glucose tolerance assessment of SMA patients with their existing clinical care management. Thus, our work has uncovered two novel and equally important roles for the SMN protein, both of which contribute significantly to SMA pathogenesis.
34

Identification of Novel Roles for the Survival Motor Neuron (Smn) Protein: Implications on Spinal Muscular Atrophy (SMA) Pathogenesis and Therapy

Bowerman, Melissa 18 April 2012 (has links)
Spinal muscular atrophy (SMA) is the leading genetic cause of death of young children. It is an autosomal recessive disease caused by the mutation and/or the deletion within the ubiquitously expressed survival motor neuron 1 (SMN1) gene. SMA pathology is characterized by spinal cord motor neuron degeneration, neuromuscular junction (NMJ) defects and muscular atrophy. Upon disease onset, SMA patients progressively become paralyzed and in the most severe cases, they die due to respiratory complications. Over the years, it has become clear that SMN is a multi-functional protein with important roles in small nuclear ribonucleoprotein (snRNP) assembly, RNA metabolism, axonal outgrowth and pathfinding, mRNA transport as well as in the functional development of NMJs, skeletal muscle and cardiac muscle. However, it remains unclear which of these functions, and the respective perturbed molecular pathways, dictate SMA pathogenesis. Here, we have established Smn-depleted PC12 cells and an intermediate SMA mouse model to characterize a role for Smn in the regulation of actin cytoskeleton dynamics. We find that Smn depletion results in the increased expression of profilin IIa and active RhoA (RhoA-GTP) as well as the decreased expression of plastin 3 and Cdc42. Importantly, the inhibition of rho-kinase (ROCK), a direct downstream regulator of RhoA, significantly increased the lifespan of SMA mice and shows beneficial potential as a therapeutic strategy for SMA. In an addition, we have uncovered a muscle- and motor neuron-independent role for SMN in the regulation of pancreatic development and glucose metabolism in SMA mice and type 1 SMA patients. This finding highlights the importance of combining a glucose tolerance assessment of SMA patients with their existing clinical care management. Thus, our work has uncovered two novel and equally important roles for the SMN protein, both of which contribute significantly to SMA pathogenesis.
35

Identification of Novel Roles for the Survival Motor Neuron (Smn) Protein: Implications on Spinal Muscular Atrophy (SMA) Pathogenesis and Therapy

Bowerman, Melissa January 2012 (has links)
Spinal muscular atrophy (SMA) is the leading genetic cause of death of young children. It is an autosomal recessive disease caused by the mutation and/or the deletion within the ubiquitously expressed survival motor neuron 1 (SMN1) gene. SMA pathology is characterized by spinal cord motor neuron degeneration, neuromuscular junction (NMJ) defects and muscular atrophy. Upon disease onset, SMA patients progressively become paralyzed and in the most severe cases, they die due to respiratory complications. Over the years, it has become clear that SMN is a multi-functional protein with important roles in small nuclear ribonucleoprotein (snRNP) assembly, RNA metabolism, axonal outgrowth and pathfinding, mRNA transport as well as in the functional development of NMJs, skeletal muscle and cardiac muscle. However, it remains unclear which of these functions, and the respective perturbed molecular pathways, dictate SMA pathogenesis. Here, we have established Smn-depleted PC12 cells and an intermediate SMA mouse model to characterize a role for Smn in the regulation of actin cytoskeleton dynamics. We find that Smn depletion results in the increased expression of profilin IIa and active RhoA (RhoA-GTP) as well as the decreased expression of plastin 3 and Cdc42. Importantly, the inhibition of rho-kinase (ROCK), a direct downstream regulator of RhoA, significantly increased the lifespan of SMA mice and shows beneficial potential as a therapeutic strategy for SMA. In an addition, we have uncovered a muscle- and motor neuron-independent role for SMN in the regulation of pancreatic development and glucose metabolism in SMA mice and type 1 SMA patients. This finding highlights the importance of combining a glucose tolerance assessment of SMA patients with their existing clinical care management. Thus, our work has uncovered two novel and equally important roles for the SMN protein, both of which contribute significantly to SMA pathogenesis.
36

Úloha Rho-kinázové signální dráhy v regulaci krevního tlaku u normotenzních a hypertenzních potkanů / The role of Rho-kinase signaling pathway in the regulation of blood pressure

Brunová, Aneta January 2015 (has links)
Calcium sensitization represents a mechanism that enables vascular smooth muscle cells to change the sensitivity of the contractile apparatus to intracellular calcium The aim of this study was to determine to what extent is calcium sensitization modulated by the renin- angiotensin system (RAS), sympathetic nervous system (SNS), nitric oxide (NO) and prostanoids produced by cyclooxygenase (COX). For this purpose we studied the effects of acute and chronic blockade of particular systems on blood pressure changes elicited in conscious normotensive rats by administration of Rho-kinase inhibitor fasudil. Adult male chronically cannulated Wistar rats were used in all experiments. Main findings of this study are as follow: 1) Decrease of blood pressure elicited by Rho-kinase inhibition was enhanced under the conditions of acute NOS inhibition. Inhibition of NOS was shown to have a bigger effect than COX inhibition (this was confirmed under the conditions of acute RAS and SNS inhibition as well). These findings are in agreement with the hypothesis that NO exerts a suppressive effect on calcium sensitization. 2) Chronic NOS inhibition caused hypertension characterized by a more pronounced blood pressure lowering after Rho-kinase inhibition in comparison with control. NO chronically suppresses the calcium...
37

To Be or Not To Be a Protrusion: Unraveling the Determinants of Protrusion Formation

Varghese, Mita 04 April 2012 (has links)
No description available.
38

Characterizing cortical myosin mini-filament regulation, length and its macroscopic implications in cytokinetic dynamics

Patino Descovich, Carlos 09 1900 (has links)
No description available.
39

Investigating the Role of Shroom3 in Collagen Regulation and Development of the Corneal Stroma

Lappin, Cory James 14 August 2018 (has links)
No description available.

Page generated in 0.2025 seconds