Spelling suggestions: "subject:"ribonucleotide""
1 |
In vivo structure-mediated regulation of ribonucleotide reductase in S. pombeSchreurs, Ann-Sofie January 2012 (has links)
Sufficient and balanced pools of deoxyribonucleotide triphophates (dNTPs) is crucial for high-fidelity DNA replication as well as correct DNA repair. The enzyme RiboNucleotide Reductase (RNR) catalyses NDP to dNDP and is therefore an essential enzyme by providing the “building blocks” to the cells. dNTPs production needs to be tightly regulated in order to minimize mutation frequencies and prevent genome instability. RNR in S. pombe is composed of two proteins, Cdc22R1 and Suc22R2, and has been described as a heterotetramer with a dimer of each subunit: the big subunit Cdc22R1 and the small subunit Suc22R2. S. pombe also posseses an RNR inhibitor: Spd1, as well as a second RNR regulator Spd2 which has been newly discovered. Spd1 has been demonstrated to inhibit RNR and to regulate its activity throughout the cell cycle. The detailed mechanism of the RNR regulation during the cell cycle or after DNA damage is not entirely clear, as are the means of inhibition by Spd1. In order to shed some light on the RNR complex and its regulation, we used various microscopybased methods to study RNR in vivo as well as in vitro. The data of this thesis suggest there are different forms of active RNR heterocomplexes, found throughout the cell cycle in the cytoplasm as well as in the nucleus. We propose that the precise stoichiometry of subunits in the complexes may vary, or that the complex conformation may be modified in an Spd1-dependent manner. In addition, treatment of the cells with a UV mimetic agent, 4NQO, seems to promote RNR regulation in an Spd1-dependent manner. On the contrary, inhibition of RNR by HydroxyUrea (HU) affects the RNR in a possible structure-related manner, independently of Spd1 or Spd2. The in vivo observations correlate with structural and/or oligomerization modifications of the RNR, representing a novel RNR regulation in S. pombe.
|
2 |
A role for Rad5 in ribonucleoside monophosphate (rNMP) toleranceElserafy, M., El-Sheikh, I., Fleifel, D., Atteya, R., AlOkda, A., Abdrabbou, M.M., Nasr, M., El-Khamisy, Sherif 01 November 2023 (has links)
Yes / Ribonucleoside monophosphate (rNMP) incorporation in genomic DNA poses a significant threat to genomic integrity. In addition to repair, DNA damage tolerance mechanisms ensure replication progression upon encountering unrepaired lesions. One player in the tolerance mechanism is Rad5, which is an E3 ubiquitin ligase and helicase. Here, we report a new role for yeast Rad5 in tolerating rNMP incorporation, in the absence of the bona fide ribonucleotide excision repair pathway via RNase H2. This role of Rad5 is further highlighted after replication stress induced by hydroxyurea or by increasing rNMP genomic burden using a mutant DNA polymerase (Pol ε - Pol2-M644G). We further demonstrate the importance of the ATPase and ubiquitin ligase domains of Rad5 in rNMP tolerance. These findings suggest a similar role for the human Rad5 homologues helicase-like transcription factor (HLTF) and SNF2 Histone Linker PHD RING Helicase (SHPRH) in rNMP tolerance, which may impact the response of cancer cells to replication stress-inducing therapeutics.
|
3 |
Regulation of mouse ribonucleotide reductase by allosteric effector-substrate interplay and hypoxiaChimploy, Korakod 12 June 2002 (has links)
In order to maintain genetic stability in eukaryotes, tight regulation of the
relative sizes of deoxyribonucleoside triphosphate (dNTP) levels inside the cell is
essential for optimal fidelity of DNA replication. Ribonucleotide reductase (RNR)
is the enzyme responsible for proportional production of DNA precursors. Studies
on regulation of this enzyme, the focus of this thesis, are important because
mutations affecting RNR control mechanisms result in dNTP pool imbalance, thus
promoting mutagenesis.
By using mouse RNR as a model for mammalian forms of the enzyme,
three major factors--allosteric effectors, rNDP substrate concentrations, and
hypoxic conditions--that influence the substrate specificity of RNR have been
investigated. Allosteric regulation has been studied by the four-substrate assay,
which permits simultaneous monitoring of the four reactions catalyzed by this
enzyme in one reaction mixture. Individual dNTPs affect the four activities
differentially in a concentration-dependent manner with discrete effects of dTTP
and dGTP on reduction of ADP and GDP, respectively. Ribonucleoside
diphosphate (rNDP) substrate concentrations are equally important, as their
variations lead to different product ratios. Results from nucleotide binding assays
indicate that rNDPs directly influence binding of dNTP effectors at the specificity
site, one of the two classes of allosteric sites, whereas ADP has an indirect effect,
displacing other substrates at the catalytic site and consequently removing effects
of those substrates upon dNTP binding. Hence, this is the first evidence of a two-way
communication between the catalytic site and the specificity site. Oxygen
limitation also plays an important role in controlling the enzyme specificity.
Reactivation of the enzyme at different oxygen tensions, after treatment of the
enzyme with hydroxyurea (HU) followed by removal of HU, reveals a distinct
sensitivity of GDP reductase to low 0��� levels. Although the basis for specific
inhibition of GDP reduction remains to be determined, some possibilities have been
ruled out.
This research proves that in addition to allosteric regulation by nucleoside
triphosphates, mouse RNR is also controlled by other factors. Since these
components can simultaneously exert their effects upon enzyme specificity,
complex regulatory patterns of RNR to provide a proportional supply of the DNA
building blocks in vivo are suggested. / Graduation date: 2003
|
4 |
Immobilisierte Ribonucleoside - Ihre Synthese und BioaffinitätRosemeyer, Helmut 17 December 2015 (has links)
A novel method for the immobilization of ribonucleosides to polysaccharides, namely to agarose, is presented, and the immobilized nucleosides are used for the purification of nucleoside-converting enzymes, such as adenosine deaminase, guanase OMP-decarboxylase and xanthine oxidase.
|
5 |
An Investigation of Bacterial Ribonucleases as an Antibiotic TargetFrazier, Ashley Denise 05 May 2012 (has links) (PDF)
Antibiotics have been commonly used in medical practice for over 40 years. However, the misuse and overuse of current antibiotics is thought to be the primary cause for the increase in antibiotic resistance.
Many current antibiotics target the bacterial ribosome. Antibiotics such as aminoglycosides and macrolides specifically target the 30S or 50S subunits to inhibit bacterial growth. During the assembly of the bacterial ribosome, ribosomal RNA of the 30S and 50S ribosomal subunits is processed by bacterial ribonucleases (RNases). RNases are also involved in the degradation and turnover of this RNA during times of stress, such as the presence of an antibiotic. This makes ribonucleases a potential target for novel antibiotics.
It was shown that Escherichia coli mutants that were deficient for RNase III, RNase E, RNase R, RNase G, or RNase PH had an increase in ribosomal subunit assembly defects. These mutant bacterial cells also displayed an increased sensitivity to neomycin and paromomycin antibiotics. My research has also shown that an inhibitor of RNases, vanadyl ribonucleoside complex, potentiated the effects of an aminoglycoside and a macrolide antibiotic in wild type Escherichia coli, methicillin sensitive Staphylococcus aureus, and methicillin resistant Staphylococcus aureus.
RNases are essential enzymes in both rRNA maturation and degradation. Based on this and previous work, the inhibition of specific RNases leads to an increased sensitivity to antibiotics. This work demonstrates that the inhibition of RNases might be a new target to combat antibiotic resistance.
|
6 |
Purification par affinité et marquage isotopique spécifique pour études d’ARN fonctionnelsDagenais, Pierre 11 1900 (has links)
Il existe un lien étroit entre la structure tridimensionnelle et la fonction cellulaire de
l’ARN. Il est donc essentiel d’effectuer des études structurales de molécules d’ARN telles
que les riborégulateurs afin de mieux caractériser leurs mécanismes d’action. Une
technique de choix, permettant d’obtenir de l’information structurale sur les molécules
d’ARN est la spectroscopie RMN. Cette technique est toutefois limitée par deux difficultés
majeures. Premièrement, la préparation d’une quantité d’ARN nécessaire à ce type d’étude est un processus long et ardu. Afin de résoudre ce problème, notre laboratoire a développé une technique rapide de purification des ARN par affinité, utilisant une étiquette ARiBo. La deuxième difficulté provient du grand recouvrement des signaux présents sur les spectres RMN de molécules d’ARN. Ce recouvrement est proportionnel à la taille de la molécule étudiée, rendant la détermination de structures d’ARN de plus de 15 kDa extrêmement complexe. La solution émergeante à ce problème est le marquage isotopique spécifique des ARN. Cependant, les protocoles élaborées jusqu’à maintenant sont très coûteux, requièrent plusieurs semaines de manipulation en laboratoire et procurent de faibles rendements.
Ce mémoire présente une nouvelle stratégie de marquage isotopique spécifique
d’ARN fonctionnels basée sur la purification par affinité ARiBo. Cette approche comprend
la séparation et la purification de nucléotides marqués, une ligation enzymatique sur
support solide, ainsi que la purification d’ARN par affinité sans restriction de séquence. La
nouvelle stratégie développée permet un marquage isotopique rapide et efficace d’ARN
fonctionnels et devrait faciliter la détermination de structures d’ARN de grandes tailles par
spectroscopie RMN. / The tridimensional structure of a given RNA molecule is closely linked to its cellular function. For this reason, it is crucial to study the structure of RNA molecules, such
as riboswitches, to characterize their mechanism of action. To do so, NMR spectroscopy is often used to gather structural data on RNA molecules in solution. However, this approach is limited by two main difficulties. First, the production of preparative quantities of natively folded and purified RNA molecules is a long and tedious process. To facilitate this step, our laboratory has developed an RNA-affinity purification method using an ARiBo tag. The second limiting step comes from the extensive signal overlap detected on NMR spectra of large RNA molecules. This overlap is proportional to the length of the RNA, which often prevents high-resolution structure determination of RNAs larger than 15 kDa. To solve this problem, specific isotopic labeling of RNAs can now be achieved. However, existing labeling protocols are expensive, require several weeks of laboratory manipulations and usually provide relatively low yields. This thesis provides an alternative strategy to achieve specific isotopic labeling of
RNA molecules, based on the ARiBo tag affinity purification technique. The protocol
includes the separation and the purification of isotopically labeled nucleotides, an
enzymatic ligation step performed on a solid support and the affinity purification of the
RNA of interest, without any sequence restriction. This new strategy is a fast and efficient
way to label functional RNAs isotopically and should facilitate NMR structure
determination of large RNAs.
|
7 |
Purification par affinité et marquage isotopique spécifique pour études d’ARN fonctionnelsDagenais, Pierre 11 1900 (has links)
Il existe un lien étroit entre la structure tridimensionnelle et la fonction cellulaire de
l’ARN. Il est donc essentiel d’effectuer des études structurales de molécules d’ARN telles
que les riborégulateurs afin de mieux caractériser leurs mécanismes d’action. Une
technique de choix, permettant d’obtenir de l’information structurale sur les molécules
d’ARN est la spectroscopie RMN. Cette technique est toutefois limitée par deux difficultés
majeures. Premièrement, la préparation d’une quantité d’ARN nécessaire à ce type d’étude est un processus long et ardu. Afin de résoudre ce problème, notre laboratoire a développé une technique rapide de purification des ARN par affinité, utilisant une étiquette ARiBo. La deuxième difficulté provient du grand recouvrement des signaux présents sur les spectres RMN de molécules d’ARN. Ce recouvrement est proportionnel à la taille de la molécule étudiée, rendant la détermination de structures d’ARN de plus de 15 kDa extrêmement complexe. La solution émergeante à ce problème est le marquage isotopique spécifique des ARN. Cependant, les protocoles élaborées jusqu’à maintenant sont très coûteux, requièrent plusieurs semaines de manipulation en laboratoire et procurent de faibles rendements.
Ce mémoire présente une nouvelle stratégie de marquage isotopique spécifique
d’ARN fonctionnels basée sur la purification par affinité ARiBo. Cette approche comprend
la séparation et la purification de nucléotides marqués, une ligation enzymatique sur
support solide, ainsi que la purification d’ARN par affinité sans restriction de séquence. La
nouvelle stratégie développée permet un marquage isotopique rapide et efficace d’ARN
fonctionnels et devrait faciliter la détermination de structures d’ARN de grandes tailles par
spectroscopie RMN. / The tridimensional structure of a given RNA molecule is closely linked to its cellular function. For this reason, it is crucial to study the structure of RNA molecules, such
as riboswitches, to characterize their mechanism of action. To do so, NMR spectroscopy is often used to gather structural data on RNA molecules in solution. However, this approach is limited by two main difficulties. First, the production of preparative quantities of natively folded and purified RNA molecules is a long and tedious process. To facilitate this step, our laboratory has developed an RNA-affinity purification method using an ARiBo tag. The second limiting step comes from the extensive signal overlap detected on NMR spectra of large RNA molecules. This overlap is proportional to the length of the RNA, which often prevents high-resolution structure determination of RNAs larger than 15 kDa. To solve this problem, specific isotopic labeling of RNAs can now be achieved. However, existing labeling protocols are expensive, require several weeks of laboratory manipulations and usually provide relatively low yields. This thesis provides an alternative strategy to achieve specific isotopic labeling of
RNA molecules, based on the ARiBo tag affinity purification technique. The protocol
includes the separation and the purification of isotopically labeled nucleotides, an
enzymatic ligation step performed on a solid support and the affinity purification of the
RNA of interest, without any sequence restriction. This new strategy is a fast and efficient
way to label functional RNAs isotopically and should facilitate NMR structure
determination of large RNAs.
|
Page generated in 0.0523 seconds