1 |
An Examination of the Inhibitory Effects of Three Antibiotics in Combination on Ribosome Biosynthesis in Staphylococcus AureusBeach, Justin M., Champney, W. Scott 01 January 2014 (has links)
Although a number of different antibiotics are used to combat staphylococcal infections, resistance has continued to develop. The use of rifampicin and ciprofloxacin in combination with azithromycin, known for its inhibitory effects on the bacterial ribosome, can create potential synergistic effects on ribosomal subunit synthesis rates. In this work, combination antibiotic treatments gave a significant decrease in cell numbers following growth in the presence of ciprofloxacin or rifampicin with azithromycin compared to those grown with azithromycin or rifampicin alone. DNA, RNA and protein synthesis rates were reduced with single antibiotic treatments and showed further decreases when drug combinations were used. 70S ribosome levels were reduced with every antibiotic treatment. DNA gyrase subunits A and B showed significant decreases for double and triple antibiotic-treated samples. Ribosomal subunit synthesis rates were diminished for each different antibiotic combination. Turnover of 16S and 23S rRNA was also observed in each case and was stimulated by antibiotic combinations. The frequency of spontaneous resistance was reduced in all double selections, and no triply resistant mutants were found.
|
2 |
Estudo das interações de Utp25 com outros componentes do complexo SSU processomo / Study of the interactions between Utp25 and other proteins of the SSU processome complexMarques da Cruz, Ana Maria Martins 15 July 2016 (has links)
A síntese de ribossomos é um dos principais processos celulares e na levedura Saccharomyces cerevisiae são necessários 75 snoRNAs e mais de 200 proteínas não-ribossomais para que o ribossomo seja corretamente formado. Para o processamento do precursor dos RNAs ribossomais, chamado pré-rRNA 35S, ocorre o pareamento deste com o U3 snoRNA e outros snoRNAs e diversas proteínas se associam de maneira orquestrada e transitória, formando o complexo SSU processomo. Tal complexo é necessário para o processamento da região 5\' do pré-rRNA 35S e para a correta montagem e maturação da subunidade menor ribossomal. Estudos anteriores do nosso laboratório identificaram a proteína nucleolar Utp25, essencial em S. cerevisiae, como integrante do complexo SSU processomo. Foi demonstrado que a depleção de Utp25 afeta a formação da subunidade menor ribossomal e que Utp25 interage com as proteínas Sas10 e Mpp10, componentes do SSU processomo, além de Utp25 co-imunoprecipitar o snoRNA U3. A partir desses dados, este trabalho teve como objetivo identificar interações da proteína Utp25 com outros componentes do complexo SSU processomo e investigar o papel de tais interações na formação e funcionamento do mesmo. Para purificação do complexo SSU processomo nós utilizamos o método Tandem Affinity Purification-tag (TAP-tag) utilizando TAP-Utp25 como isca. Após análise do purificado resultante por espectrometria de massas, obtivemos como resultado as proteínas Rrp5, Snu13 e Nop56, sendo as duas últimas pertencentes ao subcomplexo U3 snoRNP. / The ribosome synthesis is one of the main cellular processes and in the yeast Saccharomyces cerevisiae 75 snoRNAs and more than 200 non-ribosomal proteins are involved in ribosome maturation. During processing, the pre-rRNA 35S base pairs with the U3 snoRNA and other snoRNAs and several proteins associate, forming the SSU processome complex. This complex is required for the processing of the pre-rRNA 35S 5\' region and for the correct assembly and maturation of the ribosome small subunit. Previous studies from our laboratory identified the nucleolar protein Utp25, essential in S. cerevisiae, as a member of the SSU processome complex. Utp25 depletion affects small ribosomal subunit formation. Utp25 interacts with proteins Sas10 and Mpp10, components of the SSU processome, and Utp25 co-immunoprecipitates U3 snoRNA. From these data, this study aimed to identify Utp25 interactions with other components of the SSU processome complex and to investigate the role of these interactions in this complex formation and function. For the SSU processome complex purification we used the Tandem Affinity Purification-tag method (TAP-tag) and TAP-Utp25 as the bait. After the resulting purified analysis by mass spectrometry, we obtained as results the Rrp5, Snu13 and Nop56 proteins, the last two being U3 snoRNP subcomplex components.
|
3 |
Estudo das interações de Utp25 com outros componentes do complexo SSU processomo / Study of the interactions between Utp25 and other proteins of the SSU processome complexAna Maria Martins Marques da Cruz 15 July 2016 (has links)
A síntese de ribossomos é um dos principais processos celulares e na levedura Saccharomyces cerevisiae são necessários 75 snoRNAs e mais de 200 proteínas não-ribossomais para que o ribossomo seja corretamente formado. Para o processamento do precursor dos RNAs ribossomais, chamado pré-rRNA 35S, ocorre o pareamento deste com o U3 snoRNA e outros snoRNAs e diversas proteínas se associam de maneira orquestrada e transitória, formando o complexo SSU processomo. Tal complexo é necessário para o processamento da região 5\' do pré-rRNA 35S e para a correta montagem e maturação da subunidade menor ribossomal. Estudos anteriores do nosso laboratório identificaram a proteína nucleolar Utp25, essencial em S. cerevisiae, como integrante do complexo SSU processomo. Foi demonstrado que a depleção de Utp25 afeta a formação da subunidade menor ribossomal e que Utp25 interage com as proteínas Sas10 e Mpp10, componentes do SSU processomo, além de Utp25 co-imunoprecipitar o snoRNA U3. A partir desses dados, este trabalho teve como objetivo identificar interações da proteína Utp25 com outros componentes do complexo SSU processomo e investigar o papel de tais interações na formação e funcionamento do mesmo. Para purificação do complexo SSU processomo nós utilizamos o método Tandem Affinity Purification-tag (TAP-tag) utilizando TAP-Utp25 como isca. Após análise do purificado resultante por espectrometria de massas, obtivemos como resultado as proteínas Rrp5, Snu13 e Nop56, sendo as duas últimas pertencentes ao subcomplexo U3 snoRNP. / The ribosome synthesis is one of the main cellular processes and in the yeast Saccharomyces cerevisiae 75 snoRNAs and more than 200 non-ribosomal proteins are involved in ribosome maturation. During processing, the pre-rRNA 35S base pairs with the U3 snoRNA and other snoRNAs and several proteins associate, forming the SSU processome complex. This complex is required for the processing of the pre-rRNA 35S 5\' region and for the correct assembly and maturation of the ribosome small subunit. Previous studies from our laboratory identified the nucleolar protein Utp25, essential in S. cerevisiae, as a member of the SSU processome complex. Utp25 depletion affects small ribosomal subunit formation. Utp25 interacts with proteins Sas10 and Mpp10, components of the SSU processome, and Utp25 co-immunoprecipitates U3 snoRNA. From these data, this study aimed to identify Utp25 interactions with other components of the SSU processome complex and to investigate the role of these interactions in this complex formation and function. For the SSU processome complex purification we used the Tandem Affinity Purification-tag method (TAP-tag) and TAP-Utp25 as the bait. After the resulting purified analysis by mass spectrometry, we obtained as results the Rrp5, Snu13 and Nop56 proteins, the last two being U3 snoRNP subcomplex components.
|
4 |
Etude de la maturation et de l'assemblage du ribosome eucaryote: caractérisation fonctionnelle de nouveaux facteurs trans- / Functional charaterization of new trans- factors implicated in maturation and assembly of the eukaryotic ribosomeSchillewaert, Stéphanie 28 October 2011 (has links)
La synthèse du ribosome est un processus compliqué, très hiérarchisé et essentiel à toutes les cellules vivantes. La complexité de ce processus tient notamment au fait que les différentes étapes de la biogenèse du ribosome eucaryote sont temporellement et spatialement organisées dans des compartiments cellulaires différents (le nucléole, le nucléoplasme et le cytoplasme). Il est toutefois connu que le pré-ARNr 35S (le précurseur de trois des quatre ARNr, les ARNr 18S, 5.8S et 25S) est pris en charge dès sa synthèse par des facteurs impliqués dans sa maturation. Ainsi, la formation d’un ribosome requiert l’association, sur le transcrit naissant, des facteurs de synthèse, au nombre de 400. Ces facteurs essentiels interagissent transitoirement avec l’ARNr et ne font pas partie des particules ribosomiques matures impliquées dans la traduction. Leur rôle est d’assister le remodelage constant du pré-ribosome et le processus d’assemblage des sous-unités.<p>Parmi ces facteurs de synthèse, nous avons caractérisé en détail, chez la levure et chez l’homme, la protéine Las1 impliquée dans la maturation des deux extrémités de l’ITS2, séquence qui sépare les ARNr 5.8S et 25S/28S. Chez la levure, en absence de la protéine Las1, les analyses de profils de polysomes révèlent un déficit de sous-unité 60S et l’apparition d’« halfmères ». Les techniques de purification d’affinité et de gradient de sédimentation nous indiquent que Las1 est associée aux pré-ribosomes 60S et qu’elle interagit avec de nombreux facteurs de synthèse de la petite, de la grande sous-unité ou des deux. De plus, Las1 copurifie avec des pré-ribosomes qui contiennent aussi les exoribonucléases 5’-3’ Rat1/Rai1 et Xrn1. Rai1 coordonne la maturation aux deux extrémités de l’ARNr 5.8S. Nous suggérons que Las1 appartient à un macrocomplexe connectant spatialement des sites de clivages éloignés sur la séquence primaire du pré-ARNr qui seraient rapprochés suite au reploiement de l’ITS2.<p>Un autre aspect de ce travail de thèse consiste en l’étude de l’assemblage des particules ribonucléoprotéiques et plus spécifiquement du pré-ribosome et des sous-unités ribosomiques eucaryotes. Nous avons utilisé la technique d’immunoprécipitation de chromatine (Ch-IP) pour caractériser l’assemblage d’une structure appelée le « SSU processome ». Celui-ci correspond à un pré-ribosome en formation ainsi que l’assemblage des protéines ribosomiques sur l’ARNr naissant.<p>Enfin, nous avons étudié le rôle d’une plateforme d’activation de méthyltransférases d’ARN et de protéines, la protéine Trm112 dans la ribogenèse. Nous avons montré que chez la levure, Trm112 est impliquée dans la synthèse du ribosome et dans la progression de la mitose. En absence de cette protéine, les pré-ARNr sont dégradés par un mécanisme de surveillance. Trm112 copurifie avec plusieurs facteurs de synthèse du ribosome dont la méthyltransférase Bud23, impliquée dans la modification post-transcriptionnelle de l’ARNr18S. Trm112 est requise pour cette méthylation et nous postulons que la protéine Bud23 est incapable de se lier aux pré-ribosomes en l’absence de Trm112.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0685 seconds