• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Study Rigid-Frame Design versus Truss-and-Column Design

Goodman, Stephen H 01 January 1949 (has links) (PDF)
This paper describes the investigation of a mill building bent of truss and column design, a redesign using a rigid-frame, and an estimated cost of each design. For sake of brevity the overall design of the building (sway bracing, lateral bracing, purlins, girts, roofing, siding, and bay spacing) was assumed to be the same for both designs. It is possible that this assumption cannot be made and the estimates of cost, therefore, are in error. In actual practice the complete redesign of the building should be considered.
2

Automatic plastic-hinge analysis and design of 3D steel frames

Hoang Van Long, spzv 24 September 2008 (has links)
A rather complete picture of automatic plastic-hinge analysis onto steel frames under static loads is made in the present thesis. One/two/three-linear behaviours of mild steel are considered. The frames are submitted to fixed or repeated load. The geometric nonlinearity is taken into account. The beam-to-column joints of structures could be rigid or semi-rigid. The compact or slender cross-sections are examined. The investigation is carried out using direct or step-by-step methods. Both analysis and optimization methodologies are applied. From the fundamental theory to the computer program aspect are presented. Various benchmarks in open literatures are tested demonstrating the efficiency of the implementation.
3

Advanced Analysis of Steel Frame Structures Subjected to Lateral Torsional Buckling Effects

Yuan, Zeng January 2004 (has links)
The current design procedure for steel frame structures is a two-step process including an elastic analysis to determine design actions and a separate member capacity check. This design procedure is unable to trace the full range of load-deflection response and hence the failure modes of the frame structures can not be accurately predicted. In recent years, the development of advanced analysis methods has aimed at solving this problem by combining the analysis and design tasks into one step. Application of the new advanced analysis methods permits a comprehensive assessment of the actual failure modes and ultimate strengths of structural steel systems in practical design situations. One of the advanced analysis methods, the refined plastic hinge method, has shown great potential to become a practical design tool. However, at present, it is only suitable for a special class of steel frame structures that is not subject to lateral torsional buckling effects. The refined plastic hinge analysis can directly account for three types of frame failures, gradual formation of plastic hinges, column buckling and local buckling. However, this precludes most of the steel frame structures whose behaviour is governed by lateral torsional buckling. Therefore, the aim of this research is to develop a practical advanced analysis method suitable for general steel frame structures including the effects of lateral-torsional buckling. Lateral torsional buckling is a complex three dimensional instability phenomenon. Unlike the in-plane buckling of beam-columns, a closed form analytical solution is not available for lateral torsional buckling. The member capacity equations used in design specifications are derived mainly from testing of simply supported beams. Further, there has been very limited research into the behaviour and design of steel frame structures subject to lateral torsional buckling failures. Therefore in order to incorporate lateral torsional buckling effects into an advanced analysis method, a detailed study must be carried out including inelastic beam buckling failures. This thesis contains a detailed description of research on extending the scope of advanced analysis by developing methods that include the effects of lateral torsional buckling in a nonlinear analysis formulation. It has two components. Firstly, distributed plasticity models were developed using the state-of-the-art finite element analysis programs for a range of simply supported beams and rigid frame structures to investigate and fully understand their lateral torsional buckling behavioural characteristics. Nonlinear analyses were conducted to study the load-deflection response of these structures under lateral torsional buckling influences. It was found that the behaviour of simply supported beams and members in rigid frame structures is significantly different. In real frame structures, the connection details are a decisive factor in terms of ultimate frame capacities. Accounting for the connection rigidities in a simplified advanced analysis method is very difficult, but is most critical. Generally, the finite element analysis results of simply supported beams agree very well with the predictions of the current Australian steel structures design code AS4100, but the capacities of rigid frame structures can be significantly higher compared with Australian code predictions. The second part of the thesis concerns the development of a two dimensional refined plastic hinge analysis which is capable of considering lateral torsional buckling effects. The formulation of the new method is based on the observations from the distributed plasticity analyses of both simply supported beams and rigid frame structures. The lateral torsional buckling effects are taken into account implicitly using a flexural stiffness reduction factor in the stiffness matrix formulation based on the member capacities specified by AS4100. Due to the lack of suitable alternatives, concepts of moment modification and effective length factors are still used for determining the member capacities. The effects of connection rigidities and restraints from adjacent members are handled by using appropriate effective length factors in the analysis. Compared with the benchmark solutions for simply supported beams, the new refined plastic hinge analysis is very accurate. For rigid frame structures, the new method is generally more conservative than the finite element models. The accuracy of the new method relies on the user's judgement of beam segment restraints. Overall, the design capacities in the new method are superior to those in the current design procedure, especially for frame structures with less slender members. The new refined plastic hinge analysis is now able to capture four types of failure modes, plastic hinge formation, column buckling, local buckling and lateral torsional buckling. With the inclusion of lateral torsional buckling mode as proposed in this thesis, advanced analysis is one step closer to being used for general design practice.
4

Multifunkční objekt ve Znojmě / Multifunctional building in Znojmo

Tapšáková, Ivana January 2014 (has links)
The subject of the master thesis is a design and static analysis of the load-bearing multi-storey steel structure with the timber entrance shelter of the multifunctional building in Znojmo city. There is a shopping centre situated on the ground floor, other floors are mostly used as offices. The ground plan of the steel structure has a shape of a regular 20-tagon with circumscribed circle diameter 30 m. The height is 35,5 m. The building has 6 storeys at all. The racking resistance is ensured by combination of frame-shear truss and rigid frame. In the front part of the building there is an airy cut-out space situated and it is running from the ground floor until the roof structure. The glue laminated timber shelter by the entrance of the building reaches a height of the first floor and its length is 10 m.
5

Theorie macroscopique de propagation du son dans les milieux poreux 'à structure rigide permettant la dispersion spatiale: principe et validation

Nemati, Navid 11 December 2012 (has links) (PDF)
Ce travail présente et valide une théorie nonlocale nouvelle et généralisée, de la propagation acoustique dans les milieux poreux à structure rigide, saturés par un fluide viscothermique. Cette théorie linéaire permet de dépasser les limites de la théorie classique basée sur la théorie de l'homogénéisation. Elle prend en compte non seulement les phénomènes de dispersion temporelle, mais aussi ceux de dispersion spatiale. Dans le cadre de la nouvelle approche, une nouvelle procédure d'homogénéisation est proposée, qui permet de trouver les propriétés acoustiques à l'échelle macroscopique, en résolvant deux problèmes d'action-réponse indépendants, posés à l'échelle microscopique de Navier-Stokes-Fourier. Contrairement à la méthode classique d'homogénéisation, aucune contrainte de séparation d'échelle n'est introduite. En l'absence de structure solide, la procédure redonne l'équation de dispersion de Kirchhoff-Langevin, qui décrit la propagation des ondes longitudinales dans les fluides viscothermiques. La nouvelle théorie et procédure d'homogénéisation nonlocale sont validées dans trois cas, portant sur des microgéométries significativement différentes. Dans le cas simple d'un tube circulaire rempli par un fluide viscothermique, on montre que les nombres d'ondes et les impédances prédits par la théorie nonlocale, coïncident avec ceux de la solution exacte de Kirchhoff, connue depuis longtemps. Au contraire, les résultats issus de la théorie locale (celle de Zwikker et Kosten, découlant de la théorie classique d'homogénéisation) ne donnent que le mode le plus attenué, et encore, seulement avec le petit désaccord existant entre la solution simplifiée de Zwikker et Kosten et celle exacte de Kirchhoff. Dans le cas où le milieu poreux est constitué d'un réseau carré de cylindres rigides parallèles, plongés dans le fluide, la propagation étant regardée dans une direction transverse, la vitesse de phase du mode le plus atténué peut être calculée en fonction de la fréquence en suivant les approches locale et nonlocale, résolues au moyen de simulations numériques par la méthode des Eléments Finis. Elle peut être calculée d'autre part par une méthode complètement différente et quasi-exacte, de diffusion multiple prenant en compte les effets viscothermiques. Ce dernier résultat quasi-exact montre un accord remarquable avec celui obtenu par la théorie nonlocale, sans restriction de longueur d'onde. Avec celui de la théorie locale, l'accord ne se produit que tant que la longueur d'onde reste assez grande.

Page generated in 0.0561 seconds