61 |
Structural behaviour of dowel-type fasteners joints : A study implementing finite semi-rigid elementsDescamps, Thierry 26 February 2008 (has links)
Voir fichier joint
|
62 |
A calibration neutron monitor for long-term cosmic ray modulation studies / H. KrügerKrüger, Helena January 2006 (has links)
The propagation of high-energy cosmic rays is influenced by the time-varying heliospheric
magnetic field embedded in the solar wind, and by the geomagnetic field. To penetrate
through this geomagnetic field, they must have a rigidity that exceeds the geomagnetic cutoff
rigidity for a given position on the earth. In the atmosphere, the primary cosmic rays interact
with atmospheric nuclei, to form a cascade of secondary particles. Neutron monitors record
these secondary cosmic rays, mainly the neutrons, with energies about a decade higher than
detected by most spacecraft.
Since neutron monitors are integral detectors, each with its own detection efficiency, energy
spectra cannot readily be derived from their observations. One way to circumvent this is by
conducting latitudinal surveys with mobile neutron monitors. Another way is to use the
worldwide stationary neutron monitor network, but then the counting rates of these monitors
must be normalised sufficiently accurate against one another. For this reason two portable
calibration neutron monitors were built at the Potchefstroom campus of the North-West
University and completed in 2002.
To achieve sufficient calibration accuracy, several properties of the calibrator are
investigated in this work. Effects such as atmospheric pressure variations, diurnal variations,
short-term scintillations, and multiplicity, contribute to the fluctuations of the counting rate of a
neutron monitor. Due to these effects, the coefficient of variation of the calibrator is
determined to be -40% larger than the Poisson deviation. The energy response of the
calibrator over the cutoff rigidity interval from the poles to the equator is investigated, with the
result that it is almost 4% larger than that of a standard 3NM64 neutron monitor. It is also
determined that not only the calibrator, but also the stationary NM64 and IGY neutron
monitors, have fairly large instrumental temperature sensitivity, which must be accounted for
in calibration procedures. Furthermore, the calibrator has a large sensitivity to the type of
surface beneath it, influencing its counting rate by as much as 5%. This investigation is
incomplete and requires further experimentation before the calibration of the stationary
neutron monitors can start.
When calibrations of a significant number of the worldwide neutron monitors are done, their
intensity spectra as derived from differential response functions, will provide experimental
data for modulation studies at rigidities above 1 GV. / Thesis (Ph.D. (Physics))--North-West University, Potchefstroom Campus, 2006.
|
63 |
Mechanical Properties of Bio- and Nano-filamentsSamarbakhsh, Abdorreza Unknown Date
No description available.
|
64 |
A calibration neutron monitor for long-term cosmic ray modulation studies / H. KrügerKrüger, Helena January 2006 (has links)
The propagation of high-energy cosmic rays is influenced by the time-varying heliospheric
magnetic field embedded in the solar wind, and by the geomagnetic field. To penetrate
through this geomagnetic field, they must have a rigidity that exceeds the geomagnetic cutoff
rigidity for a given position on the earth. In the atmosphere, the primary cosmic rays interact
with atmospheric nuclei, to form a cascade of secondary particles. Neutron monitors record
these secondary cosmic rays, mainly the neutrons, with energies about a decade higher than
detected by most spacecraft.
Since neutron monitors are integral detectors, each with its own detection efficiency, energy
spectra cannot readily be derived from their observations. One way to circumvent this is by
conducting latitudinal surveys with mobile neutron monitors. Another way is to use the
worldwide stationary neutron monitor network, but then the counting rates of these monitors
must be normalised sufficiently accurate against one another. For this reason two portable
calibration neutron monitors were built at the Potchefstroom campus of the North-West
University and completed in 2002.
To achieve sufficient calibration accuracy, several properties of the calibrator are
investigated in this work. Effects such as atmospheric pressure variations, diurnal variations,
short-term scintillations, and multiplicity, contribute to the fluctuations of the counting rate of a
neutron monitor. Due to these effects, the coefficient of variation of the calibrator is
determined to be -40% larger than the Poisson deviation. The energy response of the
calibrator over the cutoff rigidity interval from the poles to the equator is investigated, with the
result that it is almost 4% larger than that of a standard 3NM64 neutron monitor. It is also
determined that not only the calibrator, but also the stationary NM64 and IGY neutron
monitors, have fairly large instrumental temperature sensitivity, which must be accounted for
in calibration procedures. Furthermore, the calibrator has a large sensitivity to the type of
surface beneath it, influencing its counting rate by as much as 5%. This investigation is
incomplete and requires further experimentation before the calibration of the stationary
neutron monitors can start.
When calibrations of a significant number of the worldwide neutron monitors are done, their
intensity spectra as derived from differential response functions, will provide experimental
data for modulation studies at rigidities above 1 GV. / Thesis (Ph.D. (Physics))--North-West University, Potchefstroom Campus, 2006.
|
65 |
The long term effects of short-wave diathermy and long-duration static stretch on hamstring flexibility /Graham, Daniel Joseph, January 2004 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Exercise Sciences, 2004. / Includes bibliographical references (p. 53-58).
|
66 |
The roles of cognitive rigidity and impulsivity in adolescent suicide attemptsEliason, Robin Vaughan. January 2000 (has links)
Thesis (Ph. D.)--West Virginia University, 2000. / Title from document title page. Document formatted into pages; contains ix, 138 p. Vita. Includes abstract. Includes bibliographical references (p. 104-117).
|
67 |
Cognitive flexibility and spoken discourse in younger and older adultsFleming, Valarie Beavers, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
|
68 |
Treatment response using CT-based rigidity analysis in an animal model of lytic musculoskeletal lesions subjected to systemic therapyBiggane, Peter 17 February 2016 (has links)
Cancer is a global epidemic; over 1.5 million new cancer diagnoses and greater than 600,000 deaths due to cancer are estimated to occur in the United States within the year 2015 alone. Approximately two-thirds of patients with bone metastases will experience pain, pathological fractures, spinal cord or nerve root compression, paralysis, impaired mobility, bone marrow infiltration and hypercalcemia of malignancy. We induced bone metastases through inoculation of rat femurs with MDA-MB-231 human breast cancer cells in order to compare the effectiveness of various treatment modalities, disease progression and recovery through the use of imaging methods in current clinical practice. CTRA provides highly accurate monitoring of metastases progression and treatment through both Ibandronate and Paclitaxel therapies. Using computed tomography (QCT)-based analysis to calculate the load bearing capacity of bone infiltrated with metastatic breast carcinoma, fracture risk threshold was predicted using Computed Topography Rigidity Analysis (CTRA) with 100% sensitivity and 90% specificity. The results of this study further validate that there is an existing gap between clinical guidelines and physician’s recommendations. This inconsistency necessitates that the decision making process for the selection of surgical or non-surgical treatment must be narrowed by more advanced prognostic tools such as CTRA.
|
69 |
Measurement of Membrane Rigidity and Its Modulation by the Vesicle Trafficking Protein Sar1Loftus, Andrew 29 September 2014 (has links)
Sculpting membranes into dynamic, curved shapes is central to intracellular cargo trafficking and other cellular functions. However, generation of membrane curvature during trafficking involves lipids and membrane-associated proteins; current mechanisms focus on creating rigid cages, curved scaffolds, or membrane surface area changes by proteins. This dissertation provides an alternative mechanistic example for the control of membrane deformations, involving modulation of membrane material properties. Sar1, a GTPase of the COPII family, regulates vesicle trafficking from the endoplasmic reticulum. We find that Sar1p lowers the rigidity of the lipid bilayer membrane to which it binds. We examine the behavior of Saccharomyces cerevisiae Sar1 (Sar1p) and Homo sapiens paralogs of Sar1 (Sar1A and Sar1B). Like Sar1p, human Sar1s lower membrane rigidity. Unlike Sar1p, the rigidity is not a monotonically decreasing function of concentration. At high concentrations, we find increased bending rigidity and decreased protein mobility. These features imply a model in which human Sar1 clustering governs membrane mechanical properties.
Membrane rigidity measurements remain rare, however, and show a large variance, a situation that can be addressed by improving techniques and comparing disparate techniques applied to the same systems. I introduce applying selective plane illumination microscopy (SPIM) to image thermal fluctuations of giant vesicles. SPIM's optical sectioning enables high-speed fluorescence imaging of freely suspended vesicles and quantification of edge localization precision, yielding robust fluctuation spectra and rigidity estimates. For lipid-only membranes and membranes bound by the intracellular trafficking protein Sar1p, we show rigidity values from giant
unilamellar vesicle fluctuations in close agreement with those derived from our independent assay based on membrane tether pulling. We also show that a model of homogeneous quasi-spherical vesicles poorly fits fluctuation spectra of vesicles bound by Sar1A at high concentrations, suggesting that SPIM-based analysis can offer insights into spatially inhomogeneous properties.
I conclude by discussing our current work on amphipathic alpha helices, their ability to reduce membrane rigidity, and our hopes to create artificial helical structures capable of mimicking trafficking systems. Supplemental videos represent membrane disintegration with Sar1p and fluctuations of membrane only and Sar1p incubated vesicles.
This dissertation contains previously published co-authored material.
|
70 |
Sobre renormalização e rigidez quaseconforme de polinômios quadráticos / On renormalization and quasiconformal rigidity of quadratic polynomialsArcelino Bruno Lobato do Nascimento 01 August 2016 (has links)
Sem dúvida a questão central em Dinâmica Holomorfa é aquela sobre a densidade de hiperbolicidade. Temos a seguinte conjectura devida a Pierre Fatou: No espaço das aplicações racionais de grau d o conjunto das aplicações racionais hiperbólicas neste espaço formam um subconjunto aberto e denso. Nem mesmo para a família dos polinômios quadráticos esta questão foi respondida. Para a família quadrática este problema é equivalente a mostrar a não existência de polinômios quadráticos que suportam sobre o seu conjunto de Julia um campo de linhas invariante. Devido a resultados de Jean-Christophe Yoccoz sabemos da não existência de campos de linhas invariante para polinômios quadráticos no máximo finitamente renormalizáveis. Nesta dissertação é mostrado que um polinômio quadrático infinitamente renormalizável satisfazendo certa hipótese geométrica, denominada robustez, não suporta sobre o seu Julia um campo de linhas invariante. Esta prova foi obtida por Curtis T. McMullen e publicada em [McM1]. Os avanços na teoria de renormalização e quanto ao problema da densidade de hiperbolicidade e problemas relacionados tem contado com a colaboração de inúmeros renomados matemáticos como Mikhail M. Lyubich, Artur Ávila, Mitsuhiro Shishikura, Curtis T. McMullen, Jean-Christophe Yoccoz, Sebastien van Strien, Hiroyuki Inou, dentre outros / Undoubtedly one of the central open questions in Holomorphic Dynamics is about proving the density of hyperbolicity. That question was first raised by Pierre Fatou: In the space of rational functions of degree d the set of hyperbolic rational functions form a open and dense subset. Not even for the family of quadratic polynomials this question been answered. For this particular quadratic family the problem is equivalent to showing the non-existence of quadratic polynomial with a Julia set supporting an invariant line field. Due to results by Jean-Christophe Yoccoz we already know the non-existence of invariant line fields for the quadratic polynomials that are at most finitely renormalizable. In this dissertation it is shown that an infinitely renormalizable quadratic polynomial satisfying a certain geometric hypotesis, called robustness, does not have an invariant line field supported on its Julia set. This proof was obtained by Curtis T. McMullen and published in [McM1]. Many advances on the theory of renormalization and on the problem of density of hyperbolicity have been already accomplished through the collective work of several renowned mathematicians such as Mikhail M. Lyubich, Artur Ávila, Mitsuhiro Shishikura, Curtis T. McMullen, Jean-Christophe Yoccoz, Sebastien van Strien, Hiroyuki Inou among others.
|
Page generated in 0.0403 seconds