• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 320
  • 52
  • 51
  • 28
  • 24
  • 22
  • 17
  • 13
  • 12
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 669
  • 242
  • 182
  • 179
  • 153
  • 118
  • 82
  • 77
  • 73
  • 69
  • 64
  • 58
  • 55
  • 52
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Constraints of the Building Management Ordinance as a cure to buildingmanagement problems

Lui, Chit-ying, Wendy., 呂哲盈. January 2002 (has links)
published_or_final_version / Housing Management / Master / Master of Housing Management
102

Framework For Design: The Study Of Parametrics For Contextually Responsive High Rise Design

Caron, Nicholas 24 November 2011 (has links)
The following thesis investigates parametric thinking and evolutionary solving principles in the creation of a framework for residential high rise design. Site specific parameters such as site access (pedestrian and vehicular), views, acknowledgement of neighbours, or climatic, such as natural day lighting and ventilation, should be used to inform the design. Parametric software is used as a tool to generate designs dynamically. With the help of an evolutionary solver component, the design potential is augmented by generating multiple iterations which are analyzed for their success or failure in an effort to provide an appropriate response within the context of the site. The framework is tested on a site located at the corner of Duplex Avenue and Eglinton Avenue West in Toronto, Canada.
103

Small Residence Multizone Modeling with Partial Conditioning for Energy Effieiency in Hot and Humid Climates

Andolsun, Simge 16 December 2013 (has links)
The purpose of this study is to reduce the energy cost of the low-income households in the hot and humid climates of the U.S. and thereby to help them afford comfortable homes. In this perspective, a new HVAC energy saving strategy, i.e. “partial conditioning” was modeled and its potential to reduce the HVAC energy consumption of the low income homes in Texas was quantified. The “partial conditioning” strategy combined three primary ideas: 1) using historic courtyard building schemes to provide a buffer zone between conditioned spaces, 2) zoning and applying occupancy based heating/cooling in each zone, and 3) reusing the conditioned air returning from the occupied zones in the unoccupied zones before it is returned to the system. The study was conducted in four steps: 1) data collection, 2) baseline design and modeling, 3) partial conditioning design and modeling, and 4) analyses and recommendations. First, a site visit was held to the Habitat for Humanity office in Bryan, Texas to collect data on the characteristics of the Habitat for Humanity houses built in Bryan. Second, a base-line Habitat for Humanity house was designed and modeled based on this information along with multiple other resources including International Energy Conservation Code 2012 and Building America benchmark definitions. A detailed comparison was made between the commonly used energy modeling tools (DOE-2.1e, EnergyPlus and TRNSYS) and a modeling method was developed for the estimation of the baseline energy consumption. Third, the “partial conditioning” strategy was introduced into the baseline energy model to simulate a partially conditioned atrium house. As the occupied zone and the direction of the airflow changed throughout the year in the partially conditioned house, this step required an innovative air loop model with interzonal air ducts that allowed for sched- uled bi-directional airflow. This air loop was modeled with the AirflowNetwork model of EnergyPlus. Fourth, the modeling results were analyzed and discussed to determine the performance of the partial conditioning strategy in a hot and humid climate. It was found that partial conditioning strategy can provide substantial (37%-46%) reduction in the overall HVAC energy consumption of small residences (∼1,000 ft2) in hot and humid climates while performing better in meeting the temperature set points in each room. It was also found that the quantity of the energy savings that can be obtained with the partial conditioning strategy depends significantly on the ground coupling condition of the house for low rise residential buildings.
104

Saltwater Incursion into Micro Tidal Wetlands: Case Studies from Matagorda, Texas and Humacao, Puerto Rico

Colon, Ricardo J. 16 December 2013 (has links)
Global climate change threatens the survival of microtidal wetlands by altering fundamental hydrological aspects such as precipitation patterns and tidal exchange. The combination of these stressors results in increased flooding period and soil salinity in coastal wetlands. In this study, we combined the use of detailed hydrological measurements (wetland water level and salinity), LIDAR elevation models, and water stable isotopes tracers (δD, δ18O) to study the balance between freshwater and saltwater inputs on two microtidal wetlands: a saltmarsh in Matagorda, Texas and a freshwater-forested wetland in Humacao, Puerto Rico. In Matagorda, Texas, we described the process of connectivity between different hydrologic units (isolated and connected ponds) within the saltmarsh. Pond connectivity only occurred when water levels in major water bodies adjacent to our study site reached a threshold elevation of 0.39 m. Connections events were correlated to rainfall and— to a lesser extent— wind speed and direction. We conclude that connectivity within the saltmarsh is driven by the combined effect of tidal influence and rainfall inputs, factors that will be altered by sea level rise and climate change-related changes in long term weather patterns. In Humacao, Puerto Rico, we gathered a detailed dataset of changes in salinity and water level in a freshwater forested wetland dominated by the endangered salt intolerant species Pterocarpus officinalis. In addition, we studied tree water use and identified important water sources to the wetland using stable isotope tracers. Firstly, we provide evidence that recent hydrological alterations have effectively transformed the system from mostly freshwater, to a saltwater wedge estuary. Salinity inputs travel via a tidal creek channel that allows the progression of a saltwater wedge to the inland parts of the forest. Our results suggest that inland progression of the saltwater wedge is influenced by amplitude of tidal exchange in the middle portions of the tidal creek and by extended dry periods in the headmost part of the tidal creek. Isotope data showed that surface standing water was influenced by tidal water sources during the dry season, although the spatial extent of this influence was constrained to areas of the forest that had been previously deforested. The isotopic content of groundwater samples taken at increasing distances from the tidal creek revealed that— although surface waters are dominated by freshwater inputs (rainfall and runoff) during the wet season— the influence of tidal water sources at soil depths greater than 60 cm persists throughout the year. Nonetheless, isotopic content of Pterocapus officinalis stem water samples suggest that tree water uptake is constrained to very shallow, unsaturated parts of the soil. We conclude from both case studies that the long term vulnerability of microtidal wetlands to climate change is determined by the interaction of increased annual variability of freshwater inputs along with a steady increase in mean sea levels, and aggravated by extreme climatic events.
105

Validation of EvacuatioNZ Model for High-Rise Building Analysis

Tsai, Wei-Li January 2007 (has links)
This thesis covers a variety of analytical approaches that validate the use of the EvacuatioNZ model on high-rise building analysis. Through performing a number of sensitivity analyses, several model deficiencies as well as functional limitations were improved upon and part of the model developments are continued based on the previous research done by two Master's students at the University of Canterbury. In this thesis, data from three evacuations were considered for different validating aspects. These evacuations were, a hypothetical 21-storey hotel building located in the United States of America, which was previously simulated using Simulex and EXIT89; a trial evacuation that was carried out in a 13-storey office building located in Canada; and a fire drill conducted at a 21-storey office building located in Australia. Overall, the results indicated that the EvacuatioNZ is able to produce reasonable predictions of the total evacuation time regardless of the number of floors involved. The component testing also showed satisfactory outcomes regarding the involvement of disabled occupants, complexity of node configurations, and different pre-movement time distributions. However, the current model still has a number of limitations that need to be verified and tested. These include the preferred route function and the connection problem for long stairs. Further research should also be carried out on the use of the Evacuation model on other types of building structures so as to increase the confidence level of utilizing the EvacuatioNZ model for general applications.
106

The Effects of Walking Surface and Vibration on the Gait Pattern and Vibration Perception Threshold of Typically Developing Children and Children with Idiopathic Toe Walking

Fanchiang, Hsin-chen, Geil, Mark D 10 January 2014 (has links)
The aim of the current study is to investigate novel therapeutic/treatment methods and outcome measurement for children with Idiopathic Toe Walking (ITW). Fifteen typically developing (TD) children and 15 children with ITW, aged between 4 to 10 years old, participated. The participants performed a gait exam including 30 barefoot walking trials over three 4-meter walkways before and after a whole-body vibration intervention. Vibration perception threshold tests were also conducted before and after the vibration intervention. In the gait exams, each of the walking surfaces represented a different tactile stimulus and the vibration intervention included standing on a whole body vibration platform for 60 seconds. Kinematics were collected at 100 Hz with a seven-camera 3-D motion analysis system. Walking surface and vibration intervention were the independent variables. Temporal-spatial gait parameters such as velocity, cadence, step length, and step width were measured. Heel rise occurrence (HR32) and vibration perception threshold (VPT) were also calculated as dependent variables. Walking surface significantly altered the gait parameter of both TD children and children with ITW. Vibration intervention altered the VPT scores of both TD children and children with ITW. Manipulated surface and excessive vibration may be important in the development of therapeutic/treatment methods for children with Idiopathic Toe Walking. HR32 is a novel calculation designed to distinguish on aspect of the toe-walking gait pattern. It significantly identified toe-walking patterns and quantified treatment results. Children with ITW appeared to have less toe-walking on the gravel surface. Walking on gravel surface is a potential novel method to reduce toe-walking immediately with no negative after-effects.
107

Step 1: generating dialogue: adaptation to sea level rise on Prince Edward Island

Gunn, A. Hope 10 September 2009 (has links)
Despite the uncertainties that exist within climate change projection models, the only way to reduce our vulnerability to future changes in sea level is to implement adaptation strategies. The primary goal should not be to determine a worst-case scenario, but instead to identify the most vulnerable areas first, and to gradually introduce phased adaptation strategies into relatively lower risk areas. The present study looks at how we assess the potential impacts of sea level rise and how we can make use of these assessments in planning and design practice. As a case study for impact and vulnerability assessments, the flood risk areas on the coast of Prince Edward Island are mapped and a method for conducting a vulnerability assessment for individual properties is proposed. Finally, design strategies that were generated through the assessment process are presented as examples of no-regrets adaptation strategies.
108

An evaluation of moisture dynamics and productivity of Sphagnum and Tomenthypnum mosses in western boreal peatlands, Canada

Goetz, Jonathan Daniel January 2014 (has links)
Western boreal peatlands have diverse ground covers of Sphagnum and brown mosses that have important hydrological controls on peatland-atmosphere interactions. Since peatland mosses are non-vascular, their shoot structural morphologies and community growth forms affect the storage and fluxes of water that are critical for maintaining productivity and evaporative functions. While many of the mechanisms of capillary rise are fairly well understood for Sphagnum mosses, there is less information on the water dynamics in communities of Tomenthypnum nitens, a dominant brown moss species in northern rich fens. This study investigated how the different hydrophysical characteristics of moss and peat profiles of T. nitens from a rich fen and intermixed Sphagnum angustifolium and Sphagnum magellanicum, from a poor fen affect capillary flow and water retention to support evaporation and productivity; and how different groundwater and atmospheric sources of water affected these processes. Laboratory investigations indicated volumetric water content and gross ecosystem productivity decrease with water table depth for both mosses without the advent of precipitation, with Sphagnum capitula retaining 10-20% more water than T. nitens due to its moss structure and pore connectivity with the water table. Consequently, Sphagnum capillary rise was sufficient to sustain both high pore-water pressures for evaporation and high water content for productivity at all water table depths due to a gradual shift in average water-retaining pore sizes with depth. The structure of T. nitens moss turfs, consisting of live shoots and a basal layer of old, partially decomposed shoots sometimes overlying well-decomposed peat makes capillary rise more difficult, requiring extremely low matric pressures at the surface, sometimes causing desiccation of the uppermost portions of moss shoots, and hence reduced productivity. Additional nocturnal sources of atmospheric water from dew, distillation, and vapour fluxes provide small, but potentially critical sources of water to rewet desiccated moss shoots for early morning productivity for both T. nitens and Sphagnum mosses. Investigations in the field, however, indicated that with frequent precipitation to rewet the moss and the turf base to refill large pores, evaporative demands at the T. nitens moss canopy could drive capillary flow from the water table to maintain adequate θ for productivity. T. nitens mosses also can grow in turfs disconnected from the underlying iii peat, so that the basal layer temporarily retains water from precipitation for capillary rise. Thus, while capillary connection of the T. nitens moss turf with the underlying peat and water table is not critical to maintain productivity, it grows in a relatively large range of elevations from the water table, compared to Sphagnum and feather mosses. Rewetting of the capitula and the raising of the water table by precipitation provided higher water matric pressures within the moss matrix, and along with high evaporative demands, provided the mechanisms for sufficient capillary flow for productivity. Thus, Sphagnum could grow in habitats far from the water table like feather mosses, although the latter did not require capillary rise for productivity. Furthermore, disequilibrium between water vapour and liquid in the pores of T. nitens in the near-surface suggested pressures calculated with the Kelvin equation may not provide an accurate characterization of actual matric pressures in the moss. However, as the disequilibrium is caused by vapour pressure gradients between the moss and the atmosphere, it is likely a driving factor that helps maintain vapour and capillary water fluxes to provide moisture for T. nitens and other mosses. These results illustrate hydrological mechanisms that explain how moss growth form and habitat are linked. As such, the Sphagnum and T. nitens mosses are well adapted to maintain capillary in their poorly drained habitats in western boreal peatlands.
109

Step 1: generating dialogue: adaptation to sea level rise on Prince Edward Island

Gunn, A. Hope 10 September 2009 (has links)
Despite the uncertainties that exist within climate change projection models, the only way to reduce our vulnerability to future changes in sea level is to implement adaptation strategies. The primary goal should not be to determine a worst-case scenario, but instead to identify the most vulnerable areas first, and to gradually introduce phased adaptation strategies into relatively lower risk areas. The present study looks at how we assess the potential impacts of sea level rise and how we can make use of these assessments in planning and design practice. As a case study for impact and vulnerability assessments, the flood risk areas on the coast of Prince Edward Island are mapped and a method for conducting a vulnerability assessment for individual properties is proposed. Finally, design strategies that were generated through the assessment process are presented as examples of no-regrets adaptation strategies.
110

Spatial–temporal Modelling for Estimating Impacts of Storm Surge and Sea Level Rise on Coastal Communities: The Case of Isle Madame in Cape Breton, Nova Scotia, Canada

Pakdel, Sahar 26 August 2011 (has links)
More frequent and harsh storms coupled with sea level rise are affecting Canada’s sensitive coastlines. This research studies Isle Madame in Cape Breton, Nova Scotia which has been designated by Natural Resource Canada as a sea level rise vulnerable coastal community in Canada. The research models the spatial and temporal impacts of sea level rise from storm surge by focusing on identifying vulnerable areas in the community via geographical information systems (GIS) using ArcGIS, as well as modeling dynamic coastal damage via system dynamics using STELLA. The research evaluates the impacts in terms of the environmental, social, cultural, economic pillars that profile the coastal community for a series of modelled Storm Scenarios. This research synthesizes information from a variety of sources including the coastal ecology and natural resources, as well as human society and socioeconomic indicators included in the four mentioned pillars. The objective of the research is to determine vulnerable areas on Isle Madame susceptible to storm damage, and consequently, to improve local community knowledge and preparedness to more frequent harsh storms. This research therefore presents a dynamic model for the evaluation of storm impacts in Isle Madame designed with the goal to help the community ultimately to plan and implement a strategy to adapt to pending environmental change.

Page generated in 0.0571 seconds