11 |
Développement de méthodes de domaines fictifs au second ordre / Development of a second order penalty methodEtcheverlepo, Adrien 30 January 2013 (has links)
La simulation d'écoulements dans des géométries complexes nécessite la création de maillages parfois difficile à réaliser. La méthode de pénalisation proposée dans ce travail permet de simplifier cette étape. En effet, la résolution des équations qui gouvernent l'écoulement se fait sur un maillage plus simple mais non-adapté à la géométrie du problème. Les conditions aux limites sur les parties du domaine physique immergées dans le maillage sont prises en compte à travers l'ajout d'un terme de pénalisation dans les équations. Nous nous sommes intéressés à l'approximation du terme de pénalisation pour une discrétisation par volumes finis sur maillages décalés et colocatifs. Les cas tests de vérification réalisés attestent d'un ordre de convergence spatial égal à 2 pour la méthode de pénalisation appliquée à la résolution d'une équation de type Poisson ou des équations de Navier-Stokes. Enfin, on présente les résultats obtenus pour la simulation d'écoulements turbulents autour d'un cylindre à Re=3900 et à l'intérieur d'une partie d'un assemblage combustible à Re=9500. / The simulations of fluid flows in complex geometries require the generation of body-fitted meshes which are difficult to create.The penalty method developed in this work is useful to simplify the mesh generation task.The governing equations of fluid flow are discretized using a finite volume method on an unfitted mesh.The immersed boundary conditions are taken into account through a penalty term added to the governing equations.We are interested in the approximation of the penalty term using a finite volume discretization with collocated and staggered grid.The penalty method is second-order spatial accurate for Poisson and Navier-Stokes equations.Finally, simulations of turbulent flows around a cylinder at Re=3900 and turbulent motions in a rod bundle at Re=9500 are performed.
|
12 |
FLOW CHARACTERISTICS AND MODELING OF THE UPWARD GAS-LIQUID TWO-PHASE FLOW IN VERTICAL ROD BUNDLE FLOW CHANNELS / 垂直ロッドバンドル流路内上昇気液二相流の流動特性とモデリングHan, Xu 24 September 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23506号 / 工博第4918号 / 新制||工||1768(附属図書館) / 京都大学大学院工学研究科原子核工学専攻 / (主査)教授 中島 健, 教授 横峯 健彦, 准教授 山本 俊弘 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
13 |
Experimental Analysis and Improved Modelling of Disperse Two-Phase Flows in Complex GeometriesTaş, Sibel 28 February 2023 (has links)
Gas-liquid two-phase flows are encountered in different industrial applications such as, chemical reactors, wastewater treatment, oil and gas exploration and nuclear reactors. In nuclear reactors, boiling two-phase flows occur under both normal and accident conditions. For the design and safety operation of nuclear reactors, Computational Fluid Dynamics (CFD) based on the Euler−Euler framework has become a popular tool. However, accurate CFD prediction for a fuel assembly geometry is still a challenge. The reason is that the accuracy of two-phase flow simulations is highly dependent on adequate modelling of phase interactions including interfacial forces (i.e. drag, lift, wall lubrication, turbulent dispersion and virtual mass), bubble-induced turbulence (BIT) and bubble breakup/coalescence.
Through the Euler−Euler framework, modelling of these phase interactions is provided by different approaches. These approaches include closure equations, most of which have been determined empirically. These closures are important for the accurate prediction of mean flow profiles, including void fraction and phase velocity distributions. A variety of closure models has been proposed by different researchers. However, it is difficult to differentiate them and make an appropriate choice for a particular problem without knowing their predictive properties in detail. While an extensive number of models have been developed and have meanwhile been well validated for simple pipe and column geometries, there is yet limited analysis and qualification for more complex three-dimensional flow domains. One reason for this is the lack of suitable experimental validation data. In addition, it is important to mention that most of the available models were generally obtained considering laminar or low turbulence conditions.
Therefore, it is necessary to further investigate the modelling capabilities for two-phase flows with flow complexity/high turbulence as they occur in nuclear reactors. For this purpose, additional validations are required in the CFD modelling of two-phase flows. However, studies on the capabilities of two-phase flow models directly for rod bundles are very complicated and time-consuming.
Hence, a capability analysis of the models for the three main phenomena, i.e. breakup/coalescence, drag and turbulence, was first carried out for the case of a semi-obstructed pipe under adiabatic flow conditions. The results were validated using the experimental data obtained by Neumann-Kipping (2022) on the void fraction, mean bubble diameter, bubble size distribution, liquid velocity and gas velocity for two different turbulence conditions.
Subsequently, experiments were conducted in a 3 x 3 rod bundle with a spacer and vanes using X-ray computed tomography (CT), which provides high quality void data without disturbing the flow. The effects of different mass and heat fluxes on the void fraction and its distribution downstream of the spacer were analyzed. In addition, the effects of different vane angles on the distribution of the void fraction were discussed. Furthermore, an experimental database was obtained in a rod bundle with a spacer under different flow conditions to validate the numerical modelling.
Finally, the improved CFD model obtained from the semi-obstructed pipe geometry was applied to the 3 x 3 rod bundle geometry under two different turbulence conditions. The numerical results were compared with the X-ray CT data on the void fraction. / Gas-Flüssig-Zweiphasenströmungen kommen in verschiedenen industriellen Anwendungen wie Blasensäulen, Rührkesseln und Kernreaktoren vor. In Kernreaktoren treten siedende Zweiphasenströmungen sowohl unter Normal- als auch unter Störfallbedingungen auf. Für die Auslegung und den sicheren Betrieb von Kernreaktoren ist die numerische Strömungsmechanik (engl. Computational Fluid Dynamics, CFD) auf der Grundlage des Euler−Euler-Konzepts zu einem wichtigen Instrument geworden. Eine genaue CFD-Vorhersage für eine Brennelementgeometrie ist jedoch nach wie vor eine Herausforderung. Der Grund dafür ist, dass die Genauigkeit von Zweiphasenströmungssimulationen in hohem Maße von einer genauen Modellierung der Phasenwechselwirkungen abhängt, einschließlich der Grenzflächenkräfte (d. h. Widerstand, Lift, Wand, turbulente Dispersion und virtuelle Masse), der blaseninduzierten Turbulenz (BIT) und des Aufbrechens/Koaleszierens von Blasen.
Durch den Euler−Euler-Rahmen wird die Modellierung dieser Phasenwechselwirkungen durch verschiedene Ansätze ermöglicht. Zu diesen Ansätzen gehören Schließungsgleichungen, von denen die meisten empirisch ermittelt wurden. Diese Schließungsgleichungen sind wichtig für die genaue Vorhersage von mittleren Strömungsprofilen, einschließlich Gasgehalt und Phasengeschwindigkeitsverteilungen. Es gibt eine Vielzahl von Schließungsmodellen, die von verschiedenen Forschern innerhalb ihrer experimentellen Bereiche vorgeschlagen wurden. Es ist jedoch schwierig, sie zu unterscheiden und eine geeignete Wahl für ein bestimmtes Problem zu treffen, ohne ihre Vorhersageeigenschaften im Detail zu kennen. Während für einfache Rohr- und Säulengeometrien eine große Anzahl von Modellen entwickelt und inzwischen gut validiert wurde, gibt es für komplexere dreidimensionale Strömungsgebiete noch wenig Analyse und Qualifizierung. Ein Grund dafür ist der Mangel an geeigneten experimentellen Validierungsdaten. Darüber hinaus ist es wichtig zu erwähnen, dass die meisten der verfügbaren Modelle im Allgemeinen unter laminaren oder geringen Turbulenzbedingungen erstellt wurden.
Daher ist es notwendig, die Modellierungsmöglichkeiten für Zweiphasenströmungen mit komplexer Strömung/hoher Turbulenz, wie sie in Kernreaktoren auftreten, weiter zu untersuchen. Zu diesem Zweck sind zusätzliche Validierungen bei der CFD-Modellierung von Zweiphasenströmungen erforderlich. Untersuchungen zur Leistungsfähigkeit von Zweiphasenströmungsmodellen direkt für Stabbündel sind jedoch sehr kompliziert und zeitaufwändig. Daher wurde zunächst eine Fähigkeitsanalyse der Modelle für die drei Hauptphänomene, d. h. Aufbrechen/Koaleszenz, Widerstand und Turbulenz, für den Fall eines halbgeschlossenen Rohrs unter adiabatischen Strömungsbedingungen durchgeführt. Die Ergebnisse wurden anhand der von Neumann-Kipping (2022) gewonnenen experimentellen Daten über den Gasgehalt, den mittleren Blasendurchmesser, die Blasengrößenverteilung, die Flüssigkeitsgeschwindigkeit und die Gasgeschwindigkeit für zwei verschiedene Turbulenzbedingungen validiert.
Anschließend wurden Experimente in einem 3 x 3-Stabbündel mit einem Abstandshalter und Fahnen unter Verwendung der Röntgen-Computertomographie (CT) durchgeführt, die qualitativ hochwertige Gasgehaltdaten liefert, ohne die Strömung zu stören. Die Auswirkungen unterschiedlicher Massen- und Wärmeströme auf den Gasgehalt und seine Verteilung stromabwärts des Abstandshalters wurden analysiert.
Außerdem wurden die Auswirkungen verschiedener Fahnenwinkel auf die Verteilung des Gasgehaltes diskutiert. Darüber hinaus wurde eine experimentelle Datenbasis in einem Stabbündel mit einem Abstandshalter unter verschiedenen Strömungsbedingungen gewonnen, um die numerische Modellierung zu validieren.
Schließlich wurde das verbesserte CFD-Modell, das aus der halbgeschlossenen Rohrgeometrie gewonnen wurde, auf die 3 x 3 Stabbündelgeometrie bei zwei verschiedenen Turbulenzbedingungen angewendet. Die numerischen Ergebnisse wurden mit den Röntgen-CT-Daten für den Gasgehalt verglichen.
|
14 |
Coupled Heat Transfer Processes in Enclosed Horizontal Heat Generating Rod BundlesSenve, Vinay January 2013 (has links) (PDF)
In a nuclear fuel cask, the heat generating spent fuel rods are packed in a housing and the resulting bundle is placed inside a cask of thick outer shell made of materials like lead or concrete. The cask presents a wide variation in geometrical dimensions ranging from the diameter of the rods to the diameter of the cask. To make the problem tractable, first the heat generating rod bundle alone is considered for analysis and the effective thermal conductance of the bundle is correlated in terms of the relevant parameters. In the second part, the bundle is represented as a solid of equivalent thermal conductance and the attention is focused on the modelling of the cask. The first part, dealing with the effective thermal conductance is solved using Fluent software, considering coupled conduction, natural convection and surface radiation in the heat generating rod bundle encased in a hexagonal sheath. Helium, argon, air and nitrogen are considered as working media inside the bundle. A correlation is obtained for the critical Rayleigh number which signifies the onset of natural convection. A correlation is also developed for the effective thermal conductance of the bundle, considering all the modes of transport, in terms of the maximum temperature in the rod bundle, pitch-to-diameter ratio, bundle dimension (or number of rods), heat generation rate and the sheath temperature. The correlation covers pitch-to-diameter ratios in the range 1.1-2, number of rods ranging from 19 to 217 and the heat generation rates encountered in practical applications.
The second part deals with the heat transfer modeling of the cask with the bundle represented as a solid of effective (or equivalent) thermal conductance. The mathematical model describes two-dimensional conjugate natural convection and its interaction with surface radiation in the cask. Both Boussinesq and non-Boussinesq formulations have been considered for convection. Numerical solutions are obtained on a staggered mesh with a pressure correction method using a custom-made Fortran code. The surface radiation is coupled to the conduction and convection at the solid-fluid interfaces. Steady-state results are obtained using time-marching. Results for various quantities of interest, namely, the flow and temperature distributions, Nusselt numbers, and interface temperatures, are presented. The Grashof number based on the volumetric heat generation and gap width is varied from 105 to 5 ×109. The emissivities of the interfaces are varied from 0.2-0.8 for the radiative calculations. The solid-to-fluid thermal conductivity ratio for the inner cylinder is varied in the range 5-20 in the parametric studies. Simulations are also performed with thermal conductivity calculated in an iterative manner from bundle parameters. The dimensionless outer wall conductivity ratio is chosen to correspond to cask walls made of lead or concrete. The dimensionless thickness (with respect to gap width) of the outer shell is in the range of 0.0825-1, while the inner cylinder dimensionless radius is 0.2. Air is the working medium in the cask for which the Prandtl number is 0.71. Correlations are obtained for the average temperatures and Nusselt numbers at the inner interface in terms of the parameters. The radiation heat transfer is found to contribute significantly to the heat dissipation.
|
15 |
Flow Obstruction Effects on Heat Transfer in Channels at Supercritical and High Subcritical PressuresEter, Ahmad January 2016 (has links)
The objective of this thesis research is to improve our understanding of the flow obstacle effect on heat transfer at supercritical and high subcritical pressures by experimentally studying the effect of different obstacles on heat transfer in two vertical upward-flow test sections: a 3-rod bundle and an 8 mm ID tube. The heat transfer measurements cover the region of interest of the Canadian Super-critical Water Cooled Reactor (SCWR). A thorough analysis of the obstacle effect on supercritical heat transfer (SCHT) was performed. In the 3-rod bundle, two types of obstacles were employed: wire wraps and low-impact grid spacers. Wire wraps were found to be more effective than grid spacers to enhance the SCHT. In the tubular test section, obstacles appeared to suppress the heat transfer deterioration (HTD) or decrease its severity; obstacles also generally enhanced the SCHT both in the liquid-like and the gas- like region. The experiment in the tubular test section revealed that, at certain flow conditions (low mass flux, low inlet subcooling), flow obstacles can have an adverse impact on the SCHT. A criterion to predict the onset of this adverse effect was developed. At high subcritical pressures, obstacles increased the CHF and reduced the maximum post-CHF temperature. A comparison of the experimental data with prediction methods for the SCHT, single phase heat transfer, CHF and post-dryout heat transfer was performed. Lastly, a new correlation to predict the enhancement in SCHT due to obstacles was developed for heat transfer in the liquid-like and gas-like regions.
|
Page generated in 0.0141 seconds