61 |
Folien auf Basis nachwachsender Rohstoffe für die LandwirtschaftMeister, Frank, Schaller, Jens, Schöbitz, Michael 29 April 2016 (has links)
No description available.
|
62 |
Ergebnisse des Spitzenclusters BioEconomy: Holz trifft ChemieMosler, Horst 29 April 2016 (has links)
No description available.
|
63 |
Erfahrungen eines Dienstleisters bei der Etablierung und Bewirtschaftung von KUPPeschel, Tobias 29 April 2016 (has links)
No description available.
|
64 |
Bauen mit Stroh: Potentielle Nutzbarkeit und Eignung von Stroh als Baustoff für LärmschutzwändeSchöbel, Marcus 29 April 2016 (has links)
No description available.
|
65 |
Anbauhacker im Praxiseinsatz, wirtschaftliche Ernte von KUPExler, S., Skalda, Susann 29 April 2016 (has links)
No description available.
|
66 |
Nutzung der bei der Pelletierung von Kiefernresten entstehenden ÖleMosch, M., Topf, Norbert 29 April 2016 (has links)
No description available.
|
67 |
Technische Nutzung von Enzymen aus PilzkulturenWerner, Anett, Steudler, Susanne 29 April 2016 (has links)
No description available.
|
68 |
Entrade Holzvergaser - mobile ContainerlösungenZuber, Christian 29 April 2016 (has links)
No description available.
|
69 |
Ökonomische Analyse der Rückgewinnung von hochwertigen Metallen aus elektrischen und elektronischen Altgeräten in DeutschlandGreif, Steffi 03 December 2009 (has links)
Die vorliegende Ausgabe beschäftigt sich mit dem Thema „Ökonomische Analyse der Rückgewinnung von hochwertigen Metallen aus elektrischen und elektronischen Altgeräten in Deutschland“. Elektro- und Elektronikgeräte sind aus dem täglichen Leben nicht mehr wegzudenken; die Unternehmen entwickeln und produzieren immer leistungsfähigere Produkte, wobei durch die immer schnelleren und kurzlebigeren Innovationszyklen die Abfallberge ausgedienter Elektro(nik)geräte beständig wachsen. Mit Inkrafttreten des Elektro- und Elektronikgerätegesetz am 24. März 2005 werden alte Elektro(nik)geräte zukünftig getrennt gesammelt und weitgehend verwertet. Neu ist, dass die Hersteller mehr Verantwortung für ihre Produkte übernehmen und zur Verwertung der getrennt gesammelten Elektro- und Elektronik-Altgeräten verpflichtet sind. Das Elektro- und Elektronikgerätegesetz geht zum einen aus der europäischen Richtlinie über die Entsorgung von Elektro- und Elektronik-Altgeräten (WEEE) und zum anderen aus der europäischen Richtlinie über die Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten (RoHS) hervor und gilt als Reaktion auf die wachsenden Elektro(nik)schrott-Berge. Für die Unternehmen der Entsorgungs- und Recyclingbranche ergeben sich mit diesen gesetzlichen Neuerungen neue Chancen auf Weiterentwicklung ihres Geschäftsfeldes. Besonderes Augenmerk gilt den Demontageunternehmen, mit deren Hilfe erst die gesetzlichen Forderungen, hinsichtlich der zu erzielenden Rückgewinnungsquoten und der notwendigen selektiven Behandlung einiger Baugruppen, erfüllt werden können. Die Rückgewinnung hochwertiger Metalle aus Elektro(nik)schrott bedarf im Hinblick der Preissteigerungen auf den Rohstoffmärkten höchster Priorität. Mit Etablierung eines Sekundärrohstoffmarktes kann ein rohstoffarmes Land wie Deutschland der Abhängigkeit des Importes von Primärrohstoffen signifikant entgegenwirken.
|
70 |
Optimization of long-term quarry production planning to supply raw materials for cement plantsVu, Dinh Trong 01 February 2022 (has links)
The success of a cement production project depends on the raw material supply. Longterm quarry production planning (LTQPP) is essential to maintain the supply to the cement plant. The quarry manager usually attempts to fulfil the complicated calculations, ensuring a consistent supply of raw materials to the cement plant while guaranteeing technical and operational parameters in mining. Modern quarry management relies on block models and mathematical algorithms integrated into the software to optimize the LTQPP. However, this method is potentially sensitive to geological uncertainty in resource estimation, resulting in the deviation of the supply production of raw materials. More importantly, quarry managers lack the means to deal with these requirements of LTQPP.
This research develops a stochastic optimization framework based on the combination of geostatistical simulation, clustering, and optimization techniques to optimize the LTQPP. In this framework, geostatistical simulation techniques aim to model the quarry deposit while capturing the geological uncertainty in resource estimation. The clustering techniques are to aggregate blocks into selective mining cuts that reduce the optimization problem size and generate solutions in a practical timeframe. Optimization techniques were deployed to develop a new mathematical
model to minimize the cost of producing the raw mix for the cement plant and mitigate the impact of geological uncertainty on the raw material supply. Matlab programming platform was chosen for implementing the clustering and optimization techniques and creating the software application.
A case study of a limestone deposit in Southern Vietnam was carried out to verify the proposed framework and optimization models. Geostatistical simulation is applied to capture and transfer geological uncertainty into the optimization process. The optimization model size decreases significantly using the block clustering techniques and allowing generate solutions in a reasonable timeframe on ordinary computers. By considering mining and blending simultaneously, the optimization model minimizes the additive purchases to meet blending requirements and the amount of material sent to the waste dump. The experiments are also compared with the traditional optimization framework currently used for the deposit. The comparisons show a higher chance of ensuring a consistent supply of raw materials to the cement plant with a lower cost in the proposed framework. These results proved that the proposed framework provides a powerful tool for planners to optimize the LTQPP while securing the raw material supply in cement operations under geological uncertainty.:Title page _ i
Declaration_ ii
Acknowledgements _ i
Publications during candidature_ii
Abstract _iii
Table of contents _v
List of figures_viii
List of tables _ xi
List of abbreviations _xii
Chapter 1 . Introduction _1
1.1 Background _1
1.2 Statement of the problem _2
1.3 Research aims and objectives_ 3
1.4 Scope of research _4
1.5 Research methodology _ 4
1.6 Significance of theresearch_5
1.7 Organization of thesis _6
Chapter 2 . Literature review _ 8
2.1 Introduction _ 8
2.2 Cement raw materials _8
2.3 Cement production process _ 8
2.3.1 Raw material recovery _9
2.3.2 Raw material processing_10
2.4 Impact of raw materials on the cement production process _12
2.5 Quarry planning and optimization _13
2.6 Long-term production planning (LTPP) problem _14
2.6.1 Deterministic approaches to solve the LTPP problem_15
2.6.2 Stochastic approaches for solving the LTPP problem_21
2.7 Conclusion_26
Chapter 3 . A stochastic optimization framework for LTQPP problem_28
3.1 Introduction_28
3.2 Deposit simulation_29
3.2.1 Simulating the rock type domains using SIS_30
3.2.2 Simulating the chemical grades within each domain conditionally to rock type
domains, using SGS_30
3.3 Block clustering _31
3.4 The mathematical formulation for the LTQPP problem_32
3.4.1 Notation_34
3.4.2 Mathematical formulation_36
3.5 Numerical modelling_39
3.5.1 Clustering _39
3.5.2 SMIP formulation_41
3.6 Conclusion _47
Chapter 4 . Hierarchical simulation of cement raw material deposit_ 49
4.1 Introduction _49
4.2 Research area _ 50
4.2.1 General description_50
4.2.2. Data set_50
4.3. Application of hierarchical simulation _53
4.3.1 Rock-type simulation _ 53
4.3.2 Grade simulation _60
4.4. Discussion_73
4.5. Conclusion_76
Chapter 5 . Application of the stochastic optimization framework_77
5.1 Introduction_77
5.2 Implementation of KHRA _77
5.3 Implementation of the SMIP model _78
5.3.1 Sensitivity of the penalty cost _80
5.3.2 The effectiveness of the SMIP model _82
5.4 Risk mitigation _85
5.5 Conclusion _87
Chapter 6 . Conclusions and future works _ 89
6.1 Conclusions _89
6.2 Future works _91
References_ 93
Appendix I. Software Application _100
A.I.1 Introduction _100
A.I.2 Input preparation _101
A.I.2.1 Format of block model input _101
A.I.2.2 Import block model input _102
A.I.2.2 Cost assignment _104
A.I.2.3 Size reduction _ 107
A.I.3 Optimization _110
A.I.3.1 Destination _110
A.I.3.2 Production capacity _ 111
A.I.3.3 Additive purchase _ 111
A.I.3.4 Pit slopes _ 111
A.I.3.5 Optimization _ 112
A.I.4 Visualization of optimization results _112
|
Page generated in 0.0405 seconds