• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Implementation of a Pressure-Equalizing Vent System for Low-Slope Roofs

Grant, Elizabeth J. 10 September 2003 (has links)
Winds create forces on buildings, sometimes with disastrous results. Low-slope roofs are subjected to potentially high levels of suction pressure, especially when winds strike the corner of a building, creating vortices. Traditional methods of attaching roof membranes to substrates are prone to failure when the low pressure on the roof surface instigates a transfer of forces to the roof membrane. Existing pressure-equalized roof systems use the power of the wind to transmit low pressure to the space immediately beneath the roof membrane, pulling the membrane down to the roof surface. The object of this study is the design of a wind vent which, when coupled with a single-ply roof membrane in a complete roof assembly, will successfully equalize low pressure throughout the entire field of the roof. The proposed wind vent differs from existing equalizer valves in its use of the Bernoulli effect to create low pressure. Optimized for ease of manufacturing and installation, the vent is omni-directional and contains no moving parts. After the wind vent prototype is developed, future study will be required to determine the tributary area of each vent, the interaction with the insulation beneath the membrane, the response time of the system when subjected to dynamic wind loading, the effect on the vent of various weather conditions, and the permissible amount of infiltration into the roof system. Associated research will also investigate the benefits of incorporating the heat evacuating capacity of the pressure-equalizing roof vent system into a roof membrane containing an amorphous photovoltaic array. / Master of Science
2

Cost-benefit analysis of a Building Integrated Photovolatic roofing system for a school located in Blacksburg, Virginia

Cholakkal, Leena 06 July 2006 (has links)
In the past few years, there has been a growing concern for the impact of non-renewable resource depletion and environmental degradation as a result of energy consumption in buildings. Buildings account for approximately one-half of the total energy consumption in developed countries. As architects and engineers involved with the fast growing building industry, we have the responsibility of exploring and integrating various renewable energy sources into our buildings to help us move towards what we might call "Positive Energy Architecture", where the role of the building shifts from net energy consumer to net energy producer. The object of this study is to analyze how different parameters namely solar radiation, temperature, solar altitude and solar azimuth affect the power produced by a new thin film photovoltaic panel. Through the application of multiple linear regression, the model developed is then used to evaluate the cost-effectiveness of the building integrated photovoltaic roofing system when connected to the utility grid when compared to a conventional roofing system. The analysis is applied to a school building located in Blacksburg, Virginia. Using the current utility rates and the energy consumption data, the payback period of the system is evaluated for full roof, half roof and quarter roof coverage. / Master of Science

Page generated in 0.0631 seconds