1 |
Cost-benefit analysis of a Building Integrated Photovolatic roofing system for a school located in Blacksburg, VirginiaCholakkal, Leena 06 July 2006 (has links)
In the past few years, there has been a growing concern for the impact of non-renewable resource depletion and environmental degradation as a result of energy consumption in buildings. Buildings account for approximately one-half of the total energy consumption in developed countries. As architects and engineers involved with the fast growing building industry, we have the responsibility of exploring and integrating various renewable energy sources into our buildings to help us move towards what we might call "Positive Energy Architecture", where the role of the building shifts from net energy consumer to net energy producer.
The object of this study is to analyze how different parameters namely solar radiation, temperature, solar altitude and solar azimuth affect the power produced by a new thin film photovoltaic panel. Through the application of multiple linear regression, the model developed is then used to evaluate the cost-effectiveness of the building integrated photovoltaic roofing system when connected to the utility grid when compared to a conventional roofing system. The analysis is applied to a school building located in Blacksburg, Virginia. Using the current utility rates and the energy consumption data, the payback period of the system is evaluated for full roof, half roof and quarter roof coverage. / Master of Science
|
2 |
Využívání odpadního tepla / Heat recoveryDužík, Vojtěch January 2018 (has links)
The aim of this diploma thesis is to theoretically, practically and experimentally explore different ways of waste heat utilization in the building industry. The work is divided into three basic passages. In the first part I analyze the theoretical nature of the various physical processes in recovery and is there a practical use. More emphasis is placed on heat recovery from wastewater, as I am using this way of recuperation in other parts of this diploma thesis. In the second point, I apply the use of heat from waste water when designing a technical solu-tion for the reconstruction of the heating system of the clinic. The design is solved in two variants. The first suggested location lokali- them, recuperative, shower exchanger operation rehabilitation, bath and massage. In the second variant, central recovery is envisaged using a heat exchanger in the accumulator well and water-water heat pump. Based on the technical and economic evaluation, the first option was selected. The second variant is ineffective and remains only in the case study. In the last section, I experimentally investigate the thermal efficiency and the relative savings of the heat exchanger, which is designed in the first variant of the second part. Measurement, processing of results and evaluation I made for laboratory conditions and for real conditions with the showering person. Finally, I appreciate the eco-nomic benefits of this facility.
|
Page generated in 0.0648 seconds