• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 2
  • 1
  • 1
  • Tagged with
  • 27
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The social structure, ecology and pathogens of bats in the UK

August, Thomas Adam January 2012 (has links)
This thesis examines the ecology, parasites and pathogens of three insectivorous bat species in Wytham Woods, Oxfordshire; Myotis nattereri (Natterer’s bat), M. daubentonii (Daubenton’s bat) and Plecotus auritus (Brown long-eared bat). The population structure was assessed by monitoring associations between ringed individuals, utilising recent advances in social network analysis. Populations of both M. daubentonii and M. nattereri were found to subdivide into tight-knit social groups roosting within small areas of a continuous woodland (average minimum roost home range of 0.23km2 and 0.17km2 respectively). If this population structure is a general attribute of these species it may make them more sensitive to small scale habitat change than previously thought and has implications for how diseases may spread through the population. M. daubentonii had a strong preference for roosts close to water, away from woodland edge and in areas with an easterly aspect. The factors driving roost choice in M. nattereri and P. auritus remain elusive. The segregation of M. daubentonii into bachelor and nursery colonies was not a result of the exclusion of males from roosts close to water by females, or variation in microclimate preferences between the sexes, as was predicted. Body condition (weight/forearm length) was correlated with host characteristics including age and reproductive status, and weather variables. Astroviruses and Coronaviruses, which have characteristics typical of zoonotic viruses, were identified in UK bat species for the first time. Coronaviruses identified formed species-specific clades while Astroviruses were highly diverse. Though not closely related to human viruses these are potential zoonotic diseases of the future. Models of Coronavirus and ectoparasite distribution suggest individual attributes (e.g. sex and age) and population structure (e.g. the formation of nursery and bachelor colonies) are important predictors of parasite and pathogen prevalence. This study characterises a system that offers many opportunities for future research including studies of sociality, disease modelling and conservation management.
12

ROOSTING BEHAVIOR, HABITAT USE, AND RELATIVE ABUNDANCE OF THE NORTHERN LONG-EARED BAT (<em>MYOTIS SEPTENTRIONALIS</em>) FOLLOWING ARRIVAL OF WHITE-NOSE SYNDROME TO MAMMOTH CAVE NATIONAL PARK

Thalken, Marissa M. 01 January 2017 (has links)
White-Nose Syndrome (WNS; Pseudogymnoascus destructans) is responsible for the regional population collapse of many cave-hibernating bat species, including the northern long-eared bat (Myotis septentrionalis), in eastern United States and Canada. I evaluated roosting behavior, habitat selection, and landscape-scale distribution of roosts of the northern long-eared bat during spring emergence and the early maternity season in Mammoth Cave National Park, Kentucky, USA, from 2015 to 2016. Logistic regression analysis comparing habitat features of roosts with random plots indicated selection of roosts reflected the costs of energetic demands by sex and reproductive status. Relative abundance of local bat species was assessed pre- and post-arrival of WNS in the Park during the summer season, with capture rates observed during the progression of WNS indicating that the fungal disease led to declines in the overall abundance of several bat species on the summer landscape, especially the northern long-eared bat. Distributional trends were quantified using spatial point pattern analysis which indicated that bats had clear roosting patterns associated with landscape level features and habitat resources. Monitoring bat populations regionally and at local scales will be imperative to helping conservation efforts for several bat species most affected by WNS.
13

A report in instrumental conducting including an analysis of Dances of Innocence by Jan van der Roost and Air for Band by Frank Erickson

Seago, Erica January 1900 (has links)
Master of Music / Department of Music, Theatre, and Dance / Frank C. Tracz / Three essential components of wind band conducting are as follows: music selection, score study, and rehearsal planning. This report contains an analysis and rehearsal plan for two band works and a discussion on quality literature selection for band as well as a personal philosophy of music education and student learning. The two works presented are Dances of Innocence by Jan van der Roost and Air for Band by Frank Erickson.
14

Red-headed Woodpecker Full Annual Cycle Ecology at Fort A.P. Hill, Virginia

Nickley, Benjamin 01 January 2018 (has links)
The red-headed woodpecker is a primary cavity excavator found throughout the Eastern Deciduous Forest and parts of the Great Plains. Although widespread, the red-headed woodpecker is generally considered uncommon, with patchily distributed populations. Over the past 50 years, this species has experienced precipitous, range-wide declines. The red-headed woodpecker uses a variety of cover types to meet resource needs across the annual cycle, ranging from oak savannas and wetlands, to mature beech forests and urban parks. Given their apparent adaptability to such a wide range of habitats, causes of declines are perplexing. To understand and stem declines, recent studies have focused on quantifying this species’ habitat requirements. Most of these studies have focused on a single cover type, often open forests, during the breeding season. However, effective management requires comprehensive knowledge of red-headed woodpecker habitat needs in a variety of cover types across the annual cycle. My thesis seeks to address this knowledge gap. I studied red-headed woodpecker habitat selection during both the breeding and non-breeding seasons at Fort A.P. Hill (FAPH) in Caroline County, Virginia. FAPH contains a variety of cover types that red-headed woodpeckers are known to use for breeding and overwintering, including: wetlands, open forests and closed forests. In Chapter 1, I investigated winter roost-site selection of red-headed woodpeckers in a burned forest stand. My study was the first to quantify winter habitat selection for this species. My aim was to identify variables driving winter roost-site selection at two relevant spatial scales, and estimate their parameter weights using logistic regression. I found that red-headed woodpeckers preferred habitat around the roost tree that contained a higher basal area of snags and mast-producing trees. They differentially selected roost trees based on taxon and decay state. My results indicate that managers should adopt practices that promote snag generation and retention, and mature oak recruitment. In chapter 2, I focused on red-headed woodpecker breeding season habitat requirements, as many other studies have done. However, unlike other studies that investigated habitat selection within a single cover type, I found and characterized nest-sites in three distinct cover types (wetlands, closed forests, open forests). I used a comparative approach to identify cover-type specific nest-habitat thresholds at the landscape, patch and tree scales using boosted regression trees (BRT). Although models at the landscape scale inadequately discriminated between nest and available sites, models at the patch and tree scales achieved excellent discrimination ability. I found that red-headed woodpeckers are consistent in their preference for a number of habitat features at the patch (high medium/large snag density, open canopy) and tree (large diameter tree with less bark) scales, irrespective of cover type context. However, I also found cover-type specific habitat preferences at the patch scale, indicating red-headed woodpeckers are flexible in their selection of features surrounding the nest and responsive to the broader habitat context. My findings suggest that there are a number of habitat features that facilitate breeding for red-headed woodpeckers generally, and management that promotes these features will be effective in a variety of habitat contexts. They also indicate that management can be tailored to provide the most suitable habitat for each of these three commonly used cover types. Together, Chapters 1 and Chapter 2 expand our knowledge of this declining keystone species’ habitat needs across the full annual cycle. But there is still much to know. The choices of habitat selection have consequences. Determining the conditions under which habitat features function to either help or harm populations is a necessary next step. While not a part of this thesis, I am currently investigating the factors that drive nest success among cover types, linking breeding-site selection to population dynamics. I also have behavioral data that will help reveal the mechanisms that either facilitate or constrain the exploitation of food resources across cover types. Finally, the red-headed woodpecker is a facultative migrant that often shifts habitat associations to take advantage of seasonally available resources. Data from my point count surveys—conducted over two successive winter and summer seasons—allow for development of dynamic occupancy models. Modeling shifts in occupancy across seasons will show the habitat factors underlying seasonal shifts. Site-specific differences in colonization, extinction and frequency of occupancy, within seasons but across years, will further our understanding of what constitutes habitat quality for this species, in both the breeding and non-breeding seasons.
15

ES biologinės įvairovės apsaugą užtikrinančių teisės aktų įgyvendinimas Lietuvoje (šikšnosparnių apsaugos pavyzdžiu) / Implementation of the Law Acts in Lithuania that Vouch European Union Biodiversity Protection (The Example of the Bats Protection)

Šaltenytė, Aušra 05 January 2007 (has links)
Nowadays great attention is payed to the protection of the biodiversity not only in the EU but also in the whole world. The wane of the biodiversity was influenced by the intensive use of the natural resources and the decimation of the natural landscape. This process has become very fast and often irreversible. According to the protection of the biodiversity, the five international conventions have been signed: Ramsar Convention, Rio de Janeiro Convention, Washington Convention, Bonn Convention, Bern Convention. Lithuania has ratified all of them. Now Lithuania has a very important task to fulfil all the obligations and requirements. The most important obligation is to establish the Natura 2000 territories network. Though the requirements of the directives have been started implementing since 1999, the process still continues. The SPAs status has already been given to 77 localities and 299 are the SAC potentials. There are 12 territories that are intended for the bat protection in the SAC potentials register. Great concern has been showed to the protection of these animals in Europe. On purpose to give it a better protection 31 European countries have ratified the Agreement on the Conservation of Population of European Bats (EUROBATS). Lithuania signed it in 2001. The aim of the work is to study how successfully Lithuania deals with the main 8 obligations. The obligations are: the prohibition of the deliberate catching, keeping and killing, the protection of bats converts... [to full text]
16

Multi-scale roost site selection by Rafinesque's big-eared bats and southeastern myotis in Mississippi

Fleming, Heather Lynne 09 December 2011 (has links)
Rafinesque’s big-eared bats (Corynorhinus rafinesquii; RBEB) and southeastern myotis (Myotis austroriparius; SEM) are listed on IUCN Red List of Threatened Species. Limited information on roost sites exists. I conducted roost surveys for RBEB and SEM on public forest lands in central Mississippi during winter and spring 2010. During winter, RBEB and SEM roosted in cavity trees with greater trunk diameters. In spring, roost trees used by SEM were located in forested areas of lower elevation, less slope, and greater distances from roads. Because imperfect detection can affect occupancy estimates, I estimated detection probabilities under different survey methods. Detection probability ranged from 95 – 100% and 92 – 99% when one to 2 observers used repeated surveys and removal method, respectfully. When estimating for abundance, presence of ≤20 bats led to count errors of <4%. When >20 bats were present, count errors were 38.1%. Observers correctly identified species 91% of the time.
17

INSIGHTS INTO THE ECOLOGY OF VESPERTILIONIDAE THORUGH SKULL MORPHOLOGY AND ROOST SELECTION

Matthew S Dunn (17552733) 08 December 2023 (has links)
<p dir="ltr">Bat population numbers are declining in the Midwestern United States. Reasons for decline are multifaceted (habitat degradation, fatalities at wind turbines, White Nose Syndrome, and declining insect populations), and many species are listed as endangered (Myotis sodalis, Myotis septentrionalis, Perimyotis subflavus). Other species in the Midwestern United States have no conservation status (Eptesicus fuscus), or are only listed as a species of concern (Lasiurus cinereus, Lasiurus borealis, Lasionycteris noctivagans). Bats play a crucial role in our ecosystems, providing both ecological and economic benefit as pollinators and insect population regulators. Thus, conserving these species is vital. To gain better insight into the ecology of Midwestern bat species I studied five species in two respects. First, I investigated the availability of roosts for a colony of endangered Myotis sodalis near Indianapolis. This colony has withstood high levels of urbanization and habitat degradation. Therefore, understanding what aspects of the roosting area has allowed for continued use by the colony is crucial for future conservation efforts. I used an Akaike’s Information Criteria approach to rank models that best differentiate between the current roosting area and surrounding landscape. I identified that the roosting area contained a greater number of large standing dead trees (Snags >42.6 cm) that are able to serve as primary roosts for the colony. These results demonstrate that a colony of Indiana bats may be able to withstand urbanization if they have enough large DBH snags available in the area. Future conservation efforts in a heavily urbanized environment should focus on the maintaining large snags as primary roosts. Second, I studied the morphological variation of four species (Lasiurus cinereus, Lasiurus borealis, Lasionycteris noctivagans, and Eptesicus fuscus) to parse out differences that may lead to niche specialization. These four species share habitat and foraging range and therefore may directly compete for resources. However, despite declining insect populations these four species have moderately stable populations. I collected approximately 30 craniums and mandibles for each species and compared the linear size differences between landmarks and the overall shape variation from these landmarks. Due to different phylogenies and body sizes, the four species were different from one another in all 24 linear measurements. In regards to shape variation, the Eptesicini bat craniums had characteristics of more gracile species. In addition, the mandibles of Eptesicini were highly distinct. Lasionycteris noctivagans was the least durable and Eptesicus fuscus had 10 specialization for hard bodied prey consumption. These results suggest potential niche specialization due variation in morphology.</p>
18

Seasonal activity patterns of bats in the Central Appalachians

Muthersbaugh, Michael S. 27 March 2018 (has links)
Two threats to bats are especially pervasive in the central Appalachian Mountains of the eastern United States: a fungal disease called White-nose Syndrome (WNS) and wind energy development. White-nose Syndrome has caused the death of millions of bats in North America, and multiple hibernating bat species are affected in the central Appalachians. Wind energy is one of the most rapidly-growing energy sources in eastern United States, and bats are often killed when they fly near wind turbines. Fatality rates at wind turbines is highest in bat species that migrate instead of hibernate. There is limited data on bats during the autumn and spring seasons in the central Appalachian Mountains, and the impacts of WNS and wind energy development may be exacerbated during these seasons. Therefore, I sought to determine patterns and drivers of activity for hibernating bat species during autumn and spring around hibernacula. Similarly, I set out to determine patterns and drivers of activity for migratory bat species during autumn and spring along mountain ridgelines in the central Appalachians. Lastly, I searched for evidence of potential WNS-induced changes in the summer ecology of the once common northern long eared bat. This study can help elucidate patterns of bat activity during largely understudied seasons. Furthermore, it can provide useful information needed by land managers to implement actions that could help alleviate and/or avoid potential additive negative impacts on bat species with existing conservation concerns. / MS
19

Distribuição e abundância de Amazona vinacea (Papagaio-de-peito-roxo) no oeste de Santa Catarina

Zulian, Viviane January 2017 (has links)
Esse trabalho oferece uma avaliação da abundância do papagaio-de-peito-roxo (Amazona vinacea) para 2016 e 2017, combinando contagens em dormitórios ao longo de toda a distribuição da espécie, em escala global, com amostragens replicadas em dormitórios na região oeste de Santa Catarina (WSC), em escala local, Brasil. As contagens em escala global resultaram em 3888 e 4066 indivíduos em 2016 e 2017, respectivamente. As estimativas para o WSC foram de 945 ± 50 e 1393 ± 40 para os mesmos dois anos. Não foi observada nenhuma evidência de crescimento populacional de 2016 para 2017, pois o acréscimo no número de indivíduos foi acompanhado por aumento do esforço amostral em ambas escalas. Quando extrapolamos a abundância no WSC para toda a área de distribuição da espécie, segundo a IUCN, e pressupondo densidade homogênea, obtivemos valores que estão acima da contagem na escala global, mas dentro da mesma ordem de magnitude. Nosso resultado oferece uma base sólida para afirmar que o tamanho populacional global de A. vinacea é de milhares de indivíduos, mas não dezenas de milhares. Realizamos um esforço sistemático para considerar as principais fontes de incerteza na estimativa de abundância da espécie. Cada contagem, tanto na escala local quanto na global, incluíram visitas em todos os dormitórios conhecidos dentro de um intervalo de 10 dias, evitando duplas contagens devido ao movimento dos papagaios entre dormitórios. No WSC, a abundância foi estimada usando um N-Mixture Model implementado em contexto Bayesiano. Apesar de nossa estimativa de tamanho populacional e de área de distribuição serem maiores do que as consideradas pela IUCN, sugerimos que A. vinacea permaneça na categoria “Em Perigo”, até que sejam realizados estudos sobre tendência populacional. / We offer an assessment of Vinaceous parrot (Amazona vinacea) abundance in 2016 and 2017, combining roost counts over the whole range of the species, with a replicated survey of roosts at the local scale, in western Santa Catarina state (WSC), Brazil. The whole range counts amounted to 3888 and 4066 individuals in 2016 and 2017, respectively. The WSC estimates were 945 ± 50 and of 1393 ± 40 individuals, for the same two years. We found no evidence of population growth from 2016 to 2017 because the increase in numbers is accompanied by an increase in observation effort both in WSC and at the whole-range scale. When extrapolating the WSC abundance estimate to the whole IUCN extant range of the species under the simplifying assumption of homogenous population density, we obtain values above the whole-range counts, but within the same order of magnitude. Such result offers a sound basis for putting the global population size of A. vinacea in the thousands of individuals, but not in the tens of thousands of individuals. We made a systematic effort to address key sources of uncertainty in parrot abundance estimation. Each count, at the local or whole-range scale, includes visits to all relevant roosts within less than ten days time to avoid double counting due to movement between roosts. At the local scale, we estimated abundance using an N-Mixture Model of replicated count data, implemented in a Bayesian framework. Even though we estimate a larger population size and a bigger geographic range that those currently reported by the IUCN, we suggest that A. vinacea should remain in the ‘Endangered’ IUCN threat category, pending further investigation of population trends.
20

Roosting behaviour of urban microbats: the influence of ectoparasites, roost microclimate and sociality

Evans, Lisa Nicole January 2009 (has links)
Day-roosts are an essential resource for tree-hole roosting microbats (Microchiroptera), providing shelter, protection from predators and an appropriate microclimate for energy conservation and reproduction. Microbats often make use of multiple roosting sites, shifting between roosts frequently. Conservation of tree-hole roosting microbats requires an understanding of roost selection and fidelity to enable the protection of sufficient suitable roosting sites. In Australia, as in other countries, habitat loss, particularly in the form of large hollow-bearing trees, is threatening the survival of microbat populations. In addition, the renewal of natural roosts in Australia is very slow, as trees may need to be 100 years old for hollows to form. Where roosting resources are limited, such as in urbanised areas, batboxes may be used as a substitute. As bat-boxes are also accessible to researchers, these roosting sites can help to improve our understanding of roosting behaviour. / This thesis investigates the roosting behaviour of two sympatric microbat species: Gould’s wattled bat (Chalinolobus gouldii) and the white-striped freetail bat (Tadarida australis). These are insectivorous tree-hole roosting species, which naturally occur in urban Melbourne, Australia. Both species make use of bat-boxes at three sites in Melbourne, often sharing roosts with members of the other species. This provided an opportunity not only to study their use of bat-boxes for conservation management purposes, but to investigate factors influencing bat roost selection and fidelity. This study incorporated PIT tags (microchips) and a detector array at the bat-boxes, in addition to monthly manual bat-box inspections, as a method for monitoring roost-use. This approach enabled the collection of long-term, fine-scale roosting data. These data, along with captive and field-based experiments were used to examine the influence of parasites, microclimate and social structure on roost selection patterns and roost fidelity. The specific questions posed were whether tree-hole roosting bats: select roosts based on physical characteristics; perceive a cost of carrying ectoparasites and avoid infested roosts; select roosts to maintain social associations; and select for specific beneficial microclimates. / The patterns of roost selection, ectoparasite diversity, social structure, and the selection of roost microclimate differed between the two species. Microclimate of the bat-boxes was a strong influence on roost selection for both species, as it is for microbats generally. White-striped freetail bats preferred warmer roosts with stable humidity. For Gould’s wattled bats, the selection of roost microclimate differed between the sexes and even between separate, but adjacent, roosting groups. Patterns of preference indicated that individuals had knowledge of the available roosting sites. / The presence of parasites had no obvious influence on roost selection patterns in either species. The white-striped freetail bat was found to support lower ectoparasite diversity, which may be influenced by characteristics of the pelage and may partially explain why parasite load was not a useful predictor of roost selection in this species. In contrast, Gould’s wattled bat supported a larger diversity of ectoparasites, which showed clear patterns of distribution through the bat populations, and intra-specific and spatial variability. A radio-tracking study indicated that parasites in the roost and on the Gould’s wattled bat may influence their roosting behaviour. Additionally, experimental assessments of the bats’ grooming response to parasites indicated that the perceived costs of these parasites differed with parasites that remained permanently attached to the host eliciting a stronger response than those also found in the roost. The defensive mechanism against parasites that completed part of their life-cycle in the roost was expected to be avoidance behaviour, yet, in both captive and field experiments, these parasites did not strongly influence roost selection or fidelity. / Social associations among white-striped freetail bats appeared to be random, and did not explain roosting patterns. This may reflect the restricted sampling of roosting sites, and the possible role of the bat-boxes in this study as ‘satellite’ roosts, separate from a larger communal roost, likely to be in a large tree-hollow. Unlike white-striped freetail bats, Gould’s wattled bats showed fission-fusion social structure, driven by stronger female associations. The distribution and abundance of parasites was correlated with the social structuring of the host species, and host selection appeared to facilitate transmission. These patterns suggest that female Gould’s wattled bats, in particular, are choosing roosts based on the benefits of social association despite the cost of increased parasite risk, and may provide an explanation for sexual segregation in temperate tree-roosting bats. / This study demonstrates the species-specificity of roosting behaviour, and the importance of investigating several factors that influence roost selection, to better understand roost requirements. It also highlights the inherent complexity in roost selection by tree-hole roosting microbats, which may be making trade-offs between the benefits of social associations and the cost of parasitism, as well as choosing an optimal microclimate. Further investigation into interactions between these factors will greatly advance our understanding of roost selection and fidelity in tree-hole roosting bats.

Page generated in 0.0927 seconds