• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effect of coconut palms on the pasture understory

Fernando, D. N. S. January 1990 (has links)
No description available.
2

The association between western hemlock fine roots and woody versus non-woody forest floor substrates in coastal British Columbia

Klinka, Karel January 2001 (has links)
In the wetter climates associated with the coastal forests of the Pacific Northwest, coarse woody debris (CWD) accumulations in the form of snags, downed boles, and large branches can be large in natural forest ecosystems. Although maintaining organic matter for sustainable site productivity is not in dispute, the importance of CWD as a source of soil organic matter is questionable. Forest managers attempting to optimize timber production need to know how CWD affects short-term forest tree growth and productivity. This study addresses the question of the immediate value of CWD for growth of mature (90 year old) western hemlock (Hw). Because of practical difficulty with mature trees growing in different substrates, we utilized fine root distribution or proliferation, as an indicator of important substrates.
3

Development of field techniques to predict soil carbon, soil nitrogen and root density from soil spectral reflectance : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Soil Science at Massey University, Palmerston North, New Zealand

Kusumo, Bambang Hari January 2009 (has links)
The objectives of this research were to develop and evaluate a field method for in situ measurement of soil properties using visible near-infrared reflectance spectroscopy (Vis-NIRS). A probe with an independent light source for acquiring soil reflectance spectra from soil cores was developed around an existing portable field spectrometer (ASD FieldSpecPro, Boulder, CO, USA; 350-2500 nm). Initial experiments tested the ability of the acquired spectra to predict plant root density, an important property in soil carbon dynamics. Reflectance spectra were acquired from soil containing ryegrass roots (Lolium multiflorum) grown in Allophanic and Fluvial Recent soils in a glasshouse pot trial. Differences in root density were created by differential nitrogen and phosphorus fertilization. Partial least squares regression (PLSR) was used to calibrate spectral data (pre-processed by smoothing and transforming spectra to the first derivative) against laboratory-measured root density data (wet-sieve technique). The calibration model successfully predicted root densities (r2 = 0.85, RPD = 2.63, RMSECV = 0.47 mg cm-3) observed in the pots to a moderate level of accuracy. This soil reflectance probe was then tested using a soil coring system to acquire reflectance spectra from two soils under pasture (0-60 mm soil depths) that had contrasting root densities. The PLSR calibration models for predicting root density were more accurate when soil samples from the two soils were separated rather than grouped. A more accurate prediction was found in Allophanic soils (r2 = 0.83, RPD = 2.44, RMSECV = 1.96 mg g-1) than in Fluvial Recent soils (r2 = 0.75, RPD = 1.98, RMSECV = 5.11 mg g-1). The Vis-NIRS technique was then modified slightly to work on a soil corer that could be used to measure root contents from deeper soil profiles (15- 600 mm depth) in arable land (90-day-old maize crop grown in Fluvial Recent soils). PLSR calibration models were constructed to predict the full range of maize root densities (r2 = 0.83, RPD = 2.42, RMSECV = 1.21 mg cm-3) and also soil carbon (C) and nitrogen (N) concentrations that had been determined in the laboratory (LECO FP- 2000 CNS Analyser; Leco Corp., St Joseph, MI, USA). Further studies concentrated on improving the Vis-NIRS technique for prediction of total C and N concentrations in differing soil types within different soil orders in the field. The soil coring method used in the maize studies was evaluated in permanent and recent pastoral soils (Pumice, Allophanic and Tephric Recent in the Taupo-Rotorua Volcanic Zone, North Island) with a wide range of soil organic matter contents resulting from different times (1-5 years) since conversion from forest soils. Without any sample preparation, other than the soil surface left after coring, it was possible to predict soil C and N concentrations with moderate success (C prediction r2 = 0.75, RMSEP = 1.23%, RPD = 1.97; N prediction r2 = 0.80, RMSEP = 0.10%, RPD = 2.15) using a technique of acquiring soil reflectance spectra from the horizontal cross-section of a soil core (H method). The soil probe was then modified to acquire spectra from the curved vertical wall of a soil core (V method), allowing the spectrometer’s field of view to increase to record the reflectance features of the whole soil sample taken for laboratory analysis. Improved predictions of soil C and N concentrations were achieved with the V method of spectral acquisition (C prediction r2 = 0.97, RMSECV = 0.21%, RPD = 5.80; N prediction r2 = 0.96, RMSECV = 0.02%, RPD = 5.17) compared to the H method (C prediction r2 = 0.95, RMSECV = 0.27%, RPD = 4.45; N prediction r2 = 0.94, RMSECV = 0.03%, RPD = 4.25). The V method was tested for temporal robustness by assessing its ability to predict soil C and N concentrations of Fluvial Recent soils under permanent pasture in different seasons. When principal component analysis (PCA) was used to ensure that the spectral dimensions (which were responsive to water content) of the data set used for developing the PLSR calibration model embraced those of the “unknown” soil samples, it was possible to predict soil C and N concentrations in “unknown” samples of widely different water contents (in May and November), with a high level of accuracy (C prediction r2 = 0.97, RMSEP = 0.36%, RPD = 3.43; N prediction r2 = 0.95, RMSEP = 0.03%, RPD = 3.44). This study indicates that Vis-NIRS has considerable potential for rapid in situ assessment of soil C, N and root density. The results demonstrate that field root densities in pastoral and arable soil can be predicted independently from total soil C, which will allow researchers to predict C sequestration from root production. The recommended “V” technique can be used to assess spatial and temporal variability of soil carbon and nitrogen within soil profiles and across the landscape. It can also be used to assess the rate of C sequestration and organic matter synthesis via root density prediction. It reduces the time, labour and cost of conventional soil analysis and root density measurement.
4

Development of field techniques to predict soil carbon, soil nitrogen and root density from soil spectral reflectance : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Soil Science at Massey University, Palmerston North, New Zealand

Kusumo, Bambang Hari January 2009 (has links)
The objectives of this research were to develop and evaluate a field method for in situ measurement of soil properties using visible near-infrared reflectance spectroscopy (Vis-NIRS). A probe with an independent light source for acquiring soil reflectance spectra from soil cores was developed around an existing portable field spectrometer (ASD FieldSpecPro, Boulder, CO, USA; 350-2500 nm). Initial experiments tested the ability of the acquired spectra to predict plant root density, an important property in soil carbon dynamics. Reflectance spectra were acquired from soil containing ryegrass roots (Lolium multiflorum) grown in Allophanic and Fluvial Recent soils in a glasshouse pot trial. Differences in root density were created by differential nitrogen and phosphorus fertilization. Partial least squares regression (PLSR) was used to calibrate spectral data (pre-processed by smoothing and transforming spectra to the first derivative) against laboratory-measured root density data (wet-sieve technique). The calibration model successfully predicted root densities (r2 = 0.85, RPD = 2.63, RMSECV = 0.47 mg cm-3) observed in the pots to a moderate level of accuracy. This soil reflectance probe was then tested using a soil coring system to acquire reflectance spectra from two soils under pasture (0-60 mm soil depths) that had contrasting root densities. The PLSR calibration models for predicting root density were more accurate when soil samples from the two soils were separated rather than grouped. A more accurate prediction was found in Allophanic soils (r2 = 0.83, RPD = 2.44, RMSECV = 1.96 mg g-1) than in Fluvial Recent soils (r2 = 0.75, RPD = 1.98, RMSECV = 5.11 mg g-1). The Vis-NIRS technique was then modified slightly to work on a soil corer that could be used to measure root contents from deeper soil profiles (15- 600 mm depth) in arable land (90-day-old maize crop grown in Fluvial Recent soils). PLSR calibration models were constructed to predict the full range of maize root densities (r2 = 0.83, RPD = 2.42, RMSECV = 1.21 mg cm-3) and also soil carbon (C) and nitrogen (N) concentrations that had been determined in the laboratory (LECO FP- 2000 CNS Analyser; Leco Corp., St Joseph, MI, USA). Further studies concentrated on improving the Vis-NIRS technique for prediction of total C and N concentrations in differing soil types within different soil orders in the field. The soil coring method used in the maize studies was evaluated in permanent and recent pastoral soils (Pumice, Allophanic and Tephric Recent in the Taupo-Rotorua Volcanic Zone, North Island) with a wide range of soil organic matter contents resulting from different times (1-5 years) since conversion from forest soils. Without any sample preparation, other than the soil surface left after coring, it was possible to predict soil C and N concentrations with moderate success (C prediction r2 = 0.75, RMSEP = 1.23%, RPD = 1.97; N prediction r2 = 0.80, RMSEP = 0.10%, RPD = 2.15) using a technique of acquiring soil reflectance spectra from the horizontal cross-section of a soil core (H method). The soil probe was then modified to acquire spectra from the curved vertical wall of a soil core (V method), allowing the spectrometer’s field of view to increase to record the reflectance features of the whole soil sample taken for laboratory analysis. Improved predictions of soil C and N concentrations were achieved with the V method of spectral acquisition (C prediction r2 = 0.97, RMSECV = 0.21%, RPD = 5.80; N prediction r2 = 0.96, RMSECV = 0.02%, RPD = 5.17) compared to the H method (C prediction r2 = 0.95, RMSECV = 0.27%, RPD = 4.45; N prediction r2 = 0.94, RMSECV = 0.03%, RPD = 4.25). The V method was tested for temporal robustness by assessing its ability to predict soil C and N concentrations of Fluvial Recent soils under permanent pasture in different seasons. When principal component analysis (PCA) was used to ensure that the spectral dimensions (which were responsive to water content) of the data set used for developing the PLSR calibration model embraced those of the “unknown” soil samples, it was possible to predict soil C and N concentrations in “unknown” samples of widely different water contents (in May and November), with a high level of accuracy (C prediction r2 = 0.97, RMSEP = 0.36%, RPD = 3.43; N prediction r2 = 0.95, RMSEP = 0.03%, RPD = 3.44). This study indicates that Vis-NIRS has considerable potential for rapid in situ assessment of soil C, N and root density. The results demonstrate that field root densities in pastoral and arable soil can be predicted independently from total soil C, which will allow researchers to predict C sequestration from root production. The recommended “V” technique can be used to assess spatial and temporal variability of soil carbon and nitrogen within soil profiles and across the landscape. It can also be used to assess the rate of C sequestration and organic matter synthesis via root density prediction. It reduces the time, labour and cost of conventional soil analysis and root density measurement.
5

Development of field techniques to predict soil carbon, soil nitrogen and root density from soil spectral reflectance : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Soil Science at Massey University, Palmerston North, New Zealand

Kusumo, Bambang Hari January 2009 (has links)
The objectives of this research were to develop and evaluate a field method for in situ measurement of soil properties using visible near-infrared reflectance spectroscopy (Vis-NIRS). A probe with an independent light source for acquiring soil reflectance spectra from soil cores was developed around an existing portable field spectrometer (ASD FieldSpecPro, Boulder, CO, USA; 350-2500 nm). Initial experiments tested the ability of the acquired spectra to predict plant root density, an important property in soil carbon dynamics. Reflectance spectra were acquired from soil containing ryegrass roots (Lolium multiflorum) grown in Allophanic and Fluvial Recent soils in a glasshouse pot trial. Differences in root density were created by differential nitrogen and phosphorus fertilization. Partial least squares regression (PLSR) was used to calibrate spectral data (pre-processed by smoothing and transforming spectra to the first derivative) against laboratory-measured root density data (wet-sieve technique). The calibration model successfully predicted root densities (r2 = 0.85, RPD = 2.63, RMSECV = 0.47 mg cm-3) observed in the pots to a moderate level of accuracy. This soil reflectance probe was then tested using a soil coring system to acquire reflectance spectra from two soils under pasture (0-60 mm soil depths) that had contrasting root densities. The PLSR calibration models for predicting root density were more accurate when soil samples from the two soils were separated rather than grouped. A more accurate prediction was found in Allophanic soils (r2 = 0.83, RPD = 2.44, RMSECV = 1.96 mg g-1) than in Fluvial Recent soils (r2 = 0.75, RPD = 1.98, RMSECV = 5.11 mg g-1). The Vis-NIRS technique was then modified slightly to work on a soil corer that could be used to measure root contents from deeper soil profiles (15- 600 mm depth) in arable land (90-day-old maize crop grown in Fluvial Recent soils). PLSR calibration models were constructed to predict the full range of maize root densities (r2 = 0.83, RPD = 2.42, RMSECV = 1.21 mg cm-3) and also soil carbon (C) and nitrogen (N) concentrations that had been determined in the laboratory (LECO FP- 2000 CNS Analyser; Leco Corp., St Joseph, MI, USA). Further studies concentrated on improving the Vis-NIRS technique for prediction of total C and N concentrations in differing soil types within different soil orders in the field. The soil coring method used in the maize studies was evaluated in permanent and recent pastoral soils (Pumice, Allophanic and Tephric Recent in the Taupo-Rotorua Volcanic Zone, North Island) with a wide range of soil organic matter contents resulting from different times (1-5 years) since conversion from forest soils. Without any sample preparation, other than the soil surface left after coring, it was possible to predict soil C and N concentrations with moderate success (C prediction r2 = 0.75, RMSEP = 1.23%, RPD = 1.97; N prediction r2 = 0.80, RMSEP = 0.10%, RPD = 2.15) using a technique of acquiring soil reflectance spectra from the horizontal cross-section of a soil core (H method). The soil probe was then modified to acquire spectra from the curved vertical wall of a soil core (V method), allowing the spectrometer’s field of view to increase to record the reflectance features of the whole soil sample taken for laboratory analysis. Improved predictions of soil C and N concentrations were achieved with the V method of spectral acquisition (C prediction r2 = 0.97, RMSECV = 0.21%, RPD = 5.80; N prediction r2 = 0.96, RMSECV = 0.02%, RPD = 5.17) compared to the H method (C prediction r2 = 0.95, RMSECV = 0.27%, RPD = 4.45; N prediction r2 = 0.94, RMSECV = 0.03%, RPD = 4.25). The V method was tested for temporal robustness by assessing its ability to predict soil C and N concentrations of Fluvial Recent soils under permanent pasture in different seasons. When principal component analysis (PCA) was used to ensure that the spectral dimensions (which were responsive to water content) of the data set used for developing the PLSR calibration model embraced those of the “unknown” soil samples, it was possible to predict soil C and N concentrations in “unknown” samples of widely different water contents (in May and November), with a high level of accuracy (C prediction r2 = 0.97, RMSEP = 0.36%, RPD = 3.43; N prediction r2 = 0.95, RMSEP = 0.03%, RPD = 3.44). This study indicates that Vis-NIRS has considerable potential for rapid in situ assessment of soil C, N and root density. The results demonstrate that field root densities in pastoral and arable soil can be predicted independently from total soil C, which will allow researchers to predict C sequestration from root production. The recommended “V” technique can be used to assess spatial and temporal variability of soil carbon and nitrogen within soil profiles and across the landscape. It can also be used to assess the rate of C sequestration and organic matter synthesis via root density prediction. It reduces the time, labour and cost of conventional soil analysis and root density measurement.
6

Avaliação físico-hídrica de um latossolo vermelho em pastagem de jiggs manejada sob diferentes intensidades de pastejo / Evoluation phisical and water of a typic in pasture jiggs managed under grazing intensities different

Rupollo, Carlos Zandoná 19 February 2016 (has links)
Perennial summer pastures are an excellent forage option for livestock feed, a fact that has boosted milk production in Rio Grande do Sul. However, the lack of animal load control coupled with high grazing intensities have contributed to the degradation of pastures and loss of soil quality. The study was conducted on a farm in northern Rio Grande do Sul, and the forage used was Jiggs (Cynodon dactylon) and management method adopted was the rotational grazing, covering a 268 days production cycle. The treatments consisted of different grazing intensities in a randomized block design with four replications which the following treatments were: T1 = intensity of 0%, T2 = 30%, T3 and T4 = 50% = 70%. The experimental area was disposed within a total area of 1,760 m2, which were distributed pickets 16 (4 treatments x 4 replicates) with dimensions equal to 100 m2 each (10 x 10 m). The production of forage Jiggs had no statistical difference among treatments and the production decreases with the end of the production cycle, however, the highest concentration of leaves was found at the end of the grazing cycle influenced by plant height. There is a reduction with respect to the length and root density with increasing soil depth and the treatment one where grazing intensity was zero, had the lowest average density with respect to other treatments. The air permeability of the soil (Kar) equilibrated to tensions of 6 and 100 kPa did not reach statistical difference between treatments and the depth in the periods pre and post grazing 1. The soil layer of 0-5 and 5-10 cm was that the only influenced by the treatments in Ksat, Kar and 6 and 100 kPa, leading to a reduction in the flow of air and water in the grazing periods post 3 is 5. The grazing intensity significantly alter the soil density and macroporosity and total porosity in the 0-5 and 5-10 cm. The T1 had increasing density mean values with increasing depth, however, the treatment had decreasing average values obtained in the course of depths, where the 0-5 cm layer obtained density 1.49 g cm-3. During the grazing cycle was observed generally that the microporosity remained virtually constant. The forage production showed no statistical difference in relation to grazing intensity, the roots are concentrated in the 0-5 cm layer and cattle trampling influenced root density. In general, the grazing periods influenced Kar, Ksat and bulk density in the surface layers of the soil and the micro, macro and total porosity were mainly influenced by grazing period post 3 and post 5. / As pastagens perenes de verão surgem como uma excelente opção de forrageira para alimentação do gado, fato esse que tem impulsionado a produção de leite no Rio Grande do Sul. Todavia, a falta de controle da carga animal aliada a intensidades de pastejo elevada tem contribuído com a degradação das pastagens e perda da qualidade do solo. O estudo foi desenvolvido numa propriedade rural no norte gaúcho, sendo que a forrageira utilizada foi o Jiggs (Cynodon dactylon) e o método de manejo adotado foi o pastejo rotacionado, contemplando um ciclo de produção de 268 dias. Os tratamentos foram compostos de distintas intensidades de pastejo em blocos ao acaso e contaram com quatro repetições as quais constituíram os seguintes tratamentos: T1= intensidade de 0%, T2= 30%, T3= 50% e T4= 70%. A área experimental estava disposta dentro de uma área total de 1.760 m2, onde foram distribuídos 16 piquetes (4 tratamentos x 4 repetições) com dimensões iguais a 100 m2 cada (10 x 10 m). A produção da forrageira Jiggs não apresentou diferença estatística com relação aos tratamentos, sendo que a produção decresce com o fim do ciclo produtivo, em contrapartida, a maior concentração de folhas foi encontrada no fim do ciclo de pastejo influenciada pela altura das plantas. Ocorreu redução com relação ao comprimento e densidade de raiz com aumento da profundidade sendo que a intensidade de pastejo igual a zero, apresentou a menor densidade média com relação as demais intensidades. A permeabilidade do solo ao ar (Kar) equilibrado à tensões de 6 e 100 kPa não obteve diferença estatística entre as intensidades de pastejo e a profundidade nos períodos de Pré Pastejo e no Pós Pastejo 1. A camada de solo de 0-5 e 5-10 cm foi a única que sofreu influencia dos tratamentos na Ksat e Kar à tesões de 6 e 100 kPa, ocorrendo redução do fluxo de ar e água nos períodos de pastejo Pós 3 e 5. A intensidade de pastejo altera significativamente a densidade de solo bem como a macroporosidade e porosidade total nas camadas de 0-5 e de 5-10 cm. a intensidade de 0% obteve valores médios crescentes de densidade conforme o aumento da profundidade, no entanto, o tratamento 4 obteve valores médios decrescentes no decorrer das profundidades, onde a camada de 0-5 cm apresentou densidade de 1,49 g cm-3. No decorrer do ciclo de pastejo, observou-se de modo geral que a microporosidade manteve-se praticamente constante. Em síntese, a produção de forragem não apresentou diferença estatística com relação às intensidades de pastejo, as raízes se concentram na camada de 0-5 cm e o pisoteio animal influencia na densidade de raiz. De modo geral, os períodos de pastejo influenciaram a Kar, Ksat e densidade do solo nas camadas superficiais do solo e a micro, macro e porosidade total foram influenciadas principalmente pelos períodos de pastejo Pós 3 e 5.

Page generated in 0.0897 seconds