1 |
Local geometric routing algorithms for edge-augmented planar graphsWahid, Mohammad Abdul 20 September 2013 (has links)
Given a geometric graph G = (V,E), where V is the set of vertices and E is the set of edges and a source-target pair {s,t} is a subset of V, a local geometric routing algorithm seeks a route from s to t using only local neighborhood relationships. This thesis proposes a local geometric routing algorithm that uses only a single state bit as message overhead and guarantees delivery of messages in three different classes of edge-augmented planar graphs: convex subdivisions, quasi planar convex subdivisions (allow some augmented edges on a spanning convex subdivision) and 2-augmented triangulations (allow some augmented edges on a spanning triangulation). The proposed algorithm is origin oblivious (does not require the knowledge of the origin vertex s) and predecessor oblivious (does not require the knowledge of the predecessor vertex).
|
2 |
Local geometric routing algorithms for edge-augmented planar graphsWahid, Mohammad Abdul 20 September 2013 (has links)
Given a geometric graph G = (V,E), where V is the set of vertices and E is the set of edges and a source-target pair {s,t} is a subset of V, a local geometric routing algorithm seeks a route from s to t using only local neighborhood relationships. This thesis proposes a local geometric routing algorithm that uses only a single state bit as message overhead and guarantees delivery of messages in three different classes of edge-augmented planar graphs: convex subdivisions, quasi planar convex subdivisions (allow some augmented edges on a spanning convex subdivision) and 2-augmented triangulations (allow some augmented edges on a spanning triangulation). The proposed algorithm is origin oblivious (does not require the knowledge of the origin vertex s) and predecessor oblivious (does not require the knowledge of the predecessor vertex).
|
3 |
Efficient Algorithms for Computing Shortest Path on Directed and Undirected Double-Loop NetworksChen, Ming-You 25 August 2003 (has links)
In this thesis, we present two e cent algorithms to compute shortest path
between pair of vertices in directed and undirected double-loop networks.
The algorithm for undirected double-loop networks is based on the concept
"packed basis" proposed by Janez Zerrovnik and Toma z Pisanski. With
O(logN) preprocessing time, both algorithms need only constant time to
compute the shortest path between any pair of vertices in the network. This
is an improvement of the best known algorithm, which needs O(l) time, where
l is the length of the path in the directed double-loop networks. These algo-
rithms are useful in message routing in the double-loop networks. Once the
network has been constructed, the parameters for computing the shortest
paths can be computed. At the time a message is to be delivered, the algo-
rithm needs only constant time to determine which edge the message should
be sent.
|
4 |
Energy efficient high port count optical switchesDing, Minsheng January 2018 (has links)
The advance of internet applications, such as video streaming, big data and cloud computing, is reshaping the telecommunication and internet industries. Bandwidth demands in datacentres have been boosted by these emerging data-hungry internet applications. Regarding inter- and intra-datacentre communications, fine-grained data need to be exchanged across a large shared memory space. Large-scale high-speed optical switches tend to use a rearrangeably non-blocking architecture as this limits the number of switching elements required. However, this comes at the expense of requiring more sophisticated route selection within the switch and also some forms of time-slotted protocols. The looping algorithm is the classical routing algorithm to set up paths in rearrangeably non-blocking switches. It was born in the electronic switch era, where all links in the switches are equal. It is, therefore, not able to accommodate loss difference between optical paths due to the different length of waveguides and distinct numbers of crossings, and bends, leading to sub-optimal performance. We, therefore, propose an advanced path-selection algorithm based on the looping algorithm that minimises the path-dependent loss. It explores all possible set-ups for a given connection assignment and selects the optimal one. It guarantees that no individual path would have a sufficiently substantial loss, therefore, improve the overall performance of the switch. The performance of the proposed algorithm has been assessed by modelling switches using the VPI simulator. An 8×8 Clos-tree switch demonstrates a 2.7dB decrease in loss and 1.9dB improvement in IPDR with 1.5 dB penalty for the worst case. An 8×8 dilated Beneš shows more than 4 dB loss reduction for the lossiest path and 1.4 dB IPDR improvement for 1 dB power penalty. The improved algorithm can be run once for each switch design and store its output in a compact lookup table, enabling rapid switch reconfiguration. Microelectromechanical systems (MEMS) based optical switches have been fabricated with over 1,000 ports which meet the port count requirements in data centre networks. However, the reconfiguration speed of the MEMS switches is limited to the millisecond to microsecond timescale, which is not sufficient for packet switching in datacentres. Opto-electronic devices, such as Mach-Zehnder Interferometers (MZIs) and semiconductor optical amplifiers (SOAs) with nanosecond response time show the potential to fulfil the requirements of packet switching. However, the scalability of MZI switches is inherently limited by insertion loss and accumulated crosstalk, while the scalability of SOA switches is restricted by accumulated noise and distortion. We, therefore, have proposed a dilated Beneš hybrid MZI-SOA design, where MZIs are implemented as 1×2 or 2×1 low-loss switching elements, minimising crosstalk by using a single input, and where short SOAs are included as gain or absorption units, offering either loss compensation or crosstalk suppression though adding only minimal noise and distortion. A 4×4 device has been fabricated and exhibits a mere 1.3dB loss, an extinction ratio of 47dB, and more than 13dB IPDR for a 0.5dB power penalty. When operating with 10 Gb/s per port, 6pJ/bit energy consumption is demonstrated, delivering 20% reduced energy consumption compared with SOA-based switches. The tolerance of the current control accuracy of this switch is very broad. Within a 5 mA bias current range, the power penalty can be maintained below 0.2 dB for 8 dB IPDR and 12 mA for 10 dB IPDR with a penalty less 0.5 dB. The excellent crosstalk and power penalty performance demonstrated by this chip enable the scalability of this hybrid approach. The performance of 16×16 port dilated Beneš hybrid switch is experimentally assessed by cascading 4×4 switch chips, demonstrating an IPDR of 15 dB at a 1 dB penalty with a 0.6 dB power penalty floor. In terms of switches with port count larger than 16×16, the power penalty performance has been analysed with physical layer simulations fitted with state-of-the-art data. We assess the feasibility of three potential topologies, with different architectural optimisations: dilated Beneš, Beneš and Clos-Beneš. Quantitative analysis for switches with up to 2048 ports is presented, achieving a 1.15dB penalty for a BER of 10-3, compatible with soft-decision forward error correction.
|
5 |
Wireless Transmission Method of Emergency Response---An Implementation for Multiple Sinks Data Collection in Wireless Sensor NetworksNan Chen, Nan January 2013 (has links)
In wireless sensor networks, source nodes usually send their data packets to a single sink following a specific routing protocol. In this way, unicast delivery becomes a dominant means of data transmission through the network. However, if one of links in the route is out of order, a dynamic routing protocol will rule the search by the routers for a new transmission route and thus, more time will be taken with regards to searching for the route. In this paper, a condition in which an emergency occurs is envisioned. Source nodes must send the emergency information packets to the possible sink as soon as possible. Then the multicast delivery should be taken instead of the unicast delivery so as to save more time.
|
6 |
AODV-ABR:Adaptive Backup Route in Ad-hoc NetworksHsiao, Sheng-Yu 06 September 2004 (has links)
An ad-hoc network operates without a central entity or infrastructure, and is composed of highly mobile hosts. In ad-hoc network, routing protocols are with host mobility and bandwidth constraints. There have been many recent proposals of routing protocols for ad-hoc networks. A recent trend in ad hoc network routing is the reactive on-demand philosophy where routes are established only when required. AODV(Ad-hoc On-demand Distance Vector routing) evaluates routes only on an as-needed basis and routes are maintained only as long as they are necessary. Because the network topology changes frequently in ad-hoc networks, some on-demand protocols with multi-paths or backup routes have been proposed. Sung-Ju Lee and Mario Gerla proposed an AODV-BR scheme to improve existing on-demand routing protocols by creating a mesh and providing multiple alternate routes . The algorithm establishes the mesh and multi-path using the RREP (Route Reply) of AODV, which does not transmit any extra control message. In this paper, we propose two schemes : AODV-ABR(Adaptive Backup Route) and AODV-ABL (Adaptive Backup Route and Local repair) to increase the adaptation of routing protocol to topology changes by modifying AODV-BR. In AODV-ABR, the alternative route can be creating by overhearing not only RREP packets but also data packets. AODV-ABL combines the benefits of AODV-ABR and Local Repair. Finally, we evaluate the performance improvement by simulation.
|
7 |
Routing Strategies for Multihop Wireless Relaying NetworksBabaee, Ramin Unknown Date
No description available.
|
8 |
Routing Strategies for Multihop Wireless Relaying NetworksBabaee, Ramin 06 1900 (has links)
Multihop routing is an effective method for establishing connectivity between the nodes of a network. End-to-end outage probability and total power consumption are applied as the optimization criteria for routing protocol design in multihop networks based on the local channel state information measurement at the nodes of a network. The analysis shows that employing instantaneous channel state information in routing design results in significant performance improvement of multihop communication, e.g., achieving full diversity order when the optimization criterion is outage performance. The routing metrics derived from the optimization problems cannot be optimized in a distributed manner. Establishing an alternate framework, the metrics obtained are converted into new composite metrics, which satisfy the optimality and convergence requirements for implementation in distributed environments. The analysis shows that the running time of the proposed distributed algorithm is bounded by a polynomial. / Communications
|
9 |
HIGH LEVEL SYNTHSIS FOR A NETWORK ON CHIP TOPOLOGYAli, Baraa Saeed 01 May 2013 (has links)
Network on chips (NoCs) have emerged as a panacea to solve many intercommunication issues that are imposed by the fast growing of VLSI design. NOC have been deployed as a solution for the communication delay between cores, area overhead, power consumption, etc. One of the leading parameters of speeding up the performance of system on chips (SOCs) is the efficiency of scheduling algorithms for the applications running on a SOC. In this thesis we are arguing that a global scheduling view can significantly improve latency in NoCs. This view can be achieved by having the NoC nodes communicate with each other in a predefined application-based fashion; by calculating in advance how many clock cycles the nodes need to execute and transmit packets to the network and how many clock cycles are needed for the packets to travel all the way to the destination through routers (including queuing delay). By knowing that, we could keep some of the cores stay in "Hold-On" state until the right time comes to start transmitting. This technique could lead to reduced congestion and it may guarantee that the cores do not suffer from severe resource contention, e.g. accessing memory. This task is achieved by using a network simulator (such as OPNET) and gathering statistics, so the worst case latency can be determined. Therefore, if NoC nodes can somehow postpone sending packets in a way that does not violate the deadline of their tasks, packet dropping or livelock can be avoided. It is assumed that the NoC nodes here need buffers of their own in order to hold the ready-to-transmit packets and this can be the cost of this approach.
|
10 |
IMPROVING ROUTING AND CACHING PERFORMANCE IN DHT BASED PEER-TO-PEER SYSTEMSXU, ZHIYONG January 2003 (has links)
No description available.
|
Page generated in 0.0619 seconds