• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 133
  • 126
  • 27
  • 14
  • 13
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 389
  • 259
  • 95
  • 66
  • 53
  • 50
  • 49
  • 42
  • 42
  • 39
  • 39
  • 31
  • 31
  • 31
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Ribosome Degradation in Escherichia coli

Zundel, Michael 09 September 2008 (has links)
Upon termination of translation, the fate of ribosomes is determined largely by the rate at which cells are growing. During periods of exponential growth, ribosomes are rapidly recycled, translation is re-initiated, and the ribosomes are extremely stable. However, when nutrient sources become limiting, and ribosomes are not actively translating, they may become substrates for degradation. While this phenomenon is well known, details of how the process is initiated and what are the signals for degradation have, until now, remained elusive. Here, I present in vitro and in vivo data showing that free ribosome subunits are the targets of degradative enzymes, whereas 70S particles that remain associated are protected from such degradation. Conditions that increase the formation of subunits both in vitro and in vivo lead to enhanced degradation. Thus, the simple presence of free 50S and 30S subunits is sufficient to serve as the mechanism that initiates ribosome degradation. In order to identify RNases involved in ribosome degradation, both in vitro and in vivo assays were developed. Together, they have provided evidence for a multi-step degradation process involving both endo- and exoribonucleases. Examination of extracts from strains deficient in known RNases revealed that the endoribonucleases, RNase E and RNase G, may be involved in the initial cleavages. The resulting fragments, some of which are small enough oligoribonucleotides that they remain part of the acid-soluble fraction are degraded to mononucleotides primarily by the 3'-5' exoribonucleases, RNase R and polynucleotide phosphorylase.
62

The importance of maturation factors in 30S ribosomal subunit assembly

Nord, Stefan January 2010 (has links)
The assembly of the ribosome is a complex process that needs to be highly efficient to support maximum growth. Although the individual subunits of the ribosome can be reconstituted in vitro, such a reaction is inefficient in comparison to the assembly rate in vivo. What differentiates the in vivo from the in vitro assembly is primarily the presence of ribosome assembly proteins. These are proteins that assist in the assembly of the ribosomal subunits but are not part of the mature ribosome. In bacteria, the ribosome assembly proteins include rRNA processing enzymes and rRNA/ribosomal protein (r-protein) modifying enzymes. One set of ribosome assembly proteins, the ribosome maturation factors, have been difficult to classify due to their differences in structure and their apparent lack of similarities with regard to function. As part of this thesis, the previously uncharacterized RimP (ribosome maturation) protein formerly known as P15A or YhbC, was studied. Deletion of the rimP gene affected the growth rate more severely at 44°C than at 37°C and 30°C. Polysome profile analysis revealed a decrease in the amount of translating ribosomes and a corresponding increase in the amount of free 50S and 30S ribosomal subunits. The disproportionate large increase in 50S relative to 30S subunits indicated a 30S assembly defect. RimP was shown to localize to the 30S ribosomal subunit, and an accumulation of 17S rRNA, a precursor to 16S rRNA, supports a role for RimP in 30S subunit maturation. The results from in vitro reconstitution experiments have given valuable insights in the assembly of the 30S subunit. By using a recently developed method, the role of ribosome maturation factors Era, RimM and RimP during in vitro reconstitutions of the 30S subunit was investigated. Era was found to increase the incorporation rate for most of the late binding r-proteins, while RimM and RimP had more specific effects. RimM increased the incorporation rate for r-proteins S19 and S9 and inhibited the incorporation of S13 and S12, whereas RimP increased the incorporation rate primarily for S12 and S5. A comparison of the ribosome maturation factors RimP and RbfA (ribosome binding factor A) revealed structural similarities between the N-terminal domain of RimP and the single domain of RbfA. RbfA is a 15 kDa protein that was found to high copy-suppress a dominant C23U 16S rRNA mutation giving rise to cold-sensitivity in E. coli. A number of chromosomal suppressor mutations that increased the growth rate of an rbfA null mutant were isolated. The five strongest suppressor mutations were localized to the rpsE gene, for r-protein S5 and resulted in amino acid substitutions in three positions: G87A, G87S, G91A, A127V and A127T. These alterations improved translation and the processing of 16S rRNA in the rbfA null mutant. Moreover, they also suppressed the slow growth of the C23U rRNA mutant at 30, 37 and 44°C. / Monteringen av ribosomen är en komplex process som måste vara effektiv för cellen skall kunna växa så fort som möjligt. Det är visat sedan tidigare att ribosomens två subenheter kan monteras ihop in vitro och sedan vara del av en ribosom som gungerar vid proteinsyntes, dock är den typen av rekonstrueringsreaktioner mycket ineffektiva i jämförelse med vad som krävs in vivo. Skillnaden mellan dessa två tillstånd är primärt in vivo-reaktionens närvaro av hjälpproteiner. Hjälpproteinerna assisterar monteringen av ribosomens subenheter men är själva inte en del av den färdiga ribosomen. Inom denna klass av proteiner återfinns proteiner som t.ex. processerar ribosomalt RNA och proteiner som modifierar ribosomalt RNA och ribosomala protein. En klass av hjälpproteiner, mognadsfaktorerna, har varit svåra att klassificera på grund av strukturella olikheter och en brist på funktionella likheter. En del i detta avhandlingsarbete var karaktäriseringen av den tidigare okända mognadsfaktorn RimP, tidigare kallad YhbC eller P15A. En deletion av rimP hade störst påverkan på tillväxthastigheten vid 44°C, men effekter kunde även ses vid 30°C och 37°C. En analys av den ribosomala statusen visade på en minskning av ribosomer aktiva i translation och en motsvarande ökning av fria 50S- och 30S-subenheter. Den oproportionerligt höga ökningen av fria 50S-subenheter, i relation till 30S-subenheter, indikerade att något var fel i monteringen av 30S-subenheten. RimP-proteinet återfanns lokaliserat till fria 30S-subenheter, och en ökning av omoget 16S ribosomalt RNA i en stam som saknar RimP stödjer dess roll i monteringen av 30S-subenheten. Rekonstrueringsexperiment In vitro har gett många värdefulla ledtrådar till hur 30S-subenheten monteras ihop. Genom att använda en nyligen utvecklad metod kunde vi undersöka hur mognadsfaktorerna Era, RimM och RimP påverkade monteringen av ribosomens 30S subenhet in vitro. Era ökade inkorporeringshastigheten av många av de ribosomala proteiner som inkorporeras sent i monteringen av 30S, medans RimM och RimP uppvisade mer specifika effekter. RimM ökade inkorporeringshastigheten för de ribosomala proteinerna S19 och S9, men dessutom inhiberade RimM inkorporeringen av de ribosomala proteinerna S13 och S12. RimP uppvisade den tydligaste effekten av de undersökta proteinerna genom att kraftigt öka 8 inkorporeringshastigheten för det ribosomala proteinet S12, och ökade även inkorporeringshastigheten för det ribosomala proteinet S5. En jämförelse av de två mognadsfaktorerna RbfA och RimP visade på strukturella likheter mellan RimP:s N-terminala domän och den enda domänen hos RbfA. RbfA är ett 15 kDa protein som upptäcktes som en hög-kopiesupressor av en dominant C23U-mutation i 16S ribosomalt RNA som leder till köld-känslighet hos E. coli. Ett antal kromosomala supressormutationer som ökade tillväxthastigheten för en mutant som saknar RbfA isolerades och de fem starkaste av dessa lokaliserades till rpsE genen som kodar för det ribosomala proteinet S5. Mutationerna gav upphov till aminosyra utbyten i tre positioner i S5: G87A, G87S, G91A, A127T och A127V. Förändringarna i S5 förbättrade translationen och processningen av 16S ribosomalt RNA i mutantensom saknar RbfA. Dessutom förbättrade mutationerna tillväxthastigheten hos C23U-mutanten vid 30, 37 och 44°C.
63

Isolation and identification of marine bacteria from marine mud in Vietnam with antimicrobial activity / Phân lập và nhận dạng các chủng vi sinh vật biển từ mẫu bùn biển ven bờ Việt Nam và hoạt tính kháng khuẩn của chúng

Thi, Tuyen Do, Dinh, Quyen Le, Dinh, Thi Quyen, Van, Cuong Pham 15 July 2013 (has links) (PDF)
Seventeen bacterial strains were isolated from 9 marine mud samples from the inshore environments of the East Sea. Four bacterial strains showed an inhibition against all tested microorganisms Staphylococcus aureus ATCC10832, Escherichia coli JM109, and Fusarium oxysporum. 16S rRNA sequences of four bacterial strains were obtained by PCR using specific primers. PCR products were cloned into E. coli DH5a using pJET1.2 blunt vector. The recombinant plasmids were sequenced and the lengths of these 16S rRNA sequences were ~930bp. The 16S rRNA sequence from the four bacterial DB1.2, DB1.2.3, DB4.2 and DB5.2 strain showed a high identity of 97 to 99% with the 16S rRNA sequence from Photobacterium sp., Oceanisphaera sp., Shigella sp., Stenotrophomonas sp, respectively. / Mười bảy chủng vi khuẩn đã được phân lập từ 9 mẫu bùn biển từ các vùng ven bờ biển Việt Nam. Bốn chủng vi khuẩn được ghi nhận có khả năng ức chế mạnh sự sinh trưởng và phát triển của các chủng vi khuẩn Staphylococcus aureus ATCC10832, Escherichia coli JM109, và thậm chí cả nấm Fusarium oxysporum. Trình tự gene 16S rRNA của bốn chủng vi khuẩn này đã được khuếch đại bằng PCR sử dụng cặp mồi đặc hiệu. Sản phẩm PCR được nối ghép vào vector pJET1.2 blunt sử dụng T4 ligase, hình thành plasmid tái tổ hợp và biến nạp vào E. coli DH5α. Khuẩn lạc có plasmid mang phân đoạn DNA chèn được nuôi cấy và tách plasmid. Trình tự 16S rRNA từ 4 chủng DB1.2, DB1.2.3, DB4.2 and DB5.2 chỉ ra có sự tương đồng 97 ÷ 99% so với trình tự 16S rRNA tương ứng của các chủng vi sinh vật biển trên ngân hàng gene thế giới là Photobacterium sp., Oceanisphaera sp., Shigella sp., và Stenotrophomonas sp.
64

Characterizing the phylogenetic distribution of cryptic species in the Rhodophyta using novel gene sequence analysis and molecular morphometrics

Lynch, Michael January 2011 (has links)
The Rhodophyta (red algae) are an ancient crown group of the Eukarya (ca. 1400-1500 million years), comprised of 5000 - 6000 species. Gametophytes of taxa excluding the speciose Class Florideophyceae are typically of very simple unicellular, filamentous or foliose morphologies. These simple morphologies are often homoplasious (resulting from convergent or parallel evolution) and can be indistinguishable among distinct taxa, leading to cryptic species. As a result, historical morphology-based taxonomy is often not congruent with evolutionary history. Intraspecific genetic variation is not yet characterized for non-Florideophyceae taxa. Here the intraspecific genetic variation was characterized for a locally endemic, morphologically distinct bangiophyte red alga, Bangia maxima Gardner using inter simple sequence repeat (ISSR) patterns from 91 individual filaments across seven local populations. A high degree of genetic variation was observed over very small distances (< 25 cm) and very little genetic exchange was observed between populations. It is possible that B. maxima is a true endemic species and its population dynamics may differ from other Bangia species. Metrics of sequence-based identification rely on genetic divergence among isolates to distinguish taxonomic units independent of morphology. Such metrics are especially useful for morphologically simple or cryptic species. The mitochondrial cytochrome oxidase c subunit 1 gene has been proposed for the Florideophyceae. An evaluation of this gene as a metric for non-Florideophyceae taxa was undertaken and limited utility was demonstrated in most lineages of Rhodophyta due to poor or inconsistent amplification and conflicts with nuclear and plastid phylogenies. Patterns of genetic divergence among taxa are used to infer evolutionary relationships. The nuclear ribosomal small subunit (nSSU rRNA) is the taxonomically broadest pool of gene sequence data for the Rhodophyta. The use of stochastic models of nucleotide evolution is the most common approach to inferring phylogenies using this gene, ignoring much of its evolutionary information as different characters that contribute to secondary structure (e.g. paired nucleotides) are treated independently. The incorporation of structural information leads to more biologically realistic evolutionary models increasing phylogenetic resolution. Parametric models incorporating structural information were used here to more fully resolve phylogenies for all known Rhodophyta lineages. Novel phylogenetic topologies were observed and well supported for each Class within the Rhodophyta resulting in a number of formally proposed or suggested taxonomic revisions. These include phylogenetic resolution of Rhodophyta Classes, support for the introduction of 11 genera within the Bangiales and support for various taxonomic revisions within the Florideophyceae previously proposed but not yet fully adopted. As structure evolves more slowly than its constituent sequence, secondary structure elements can further resolve evolutionary relationships, especially in lineages as old as the Rhodophyta. A novel encoding of secondary structure elements and subsequent multivariate analysis was performed for all known Rhodophyta nSSU rRNA gene sequences, reinforcing phylogenetic results. Computer programs developed for these analyses are publicly available. The analyses presented here significantly advanced understanding of the evolutionary distribution of cryptic species within the Rhodophyta. Furthermore, useful methods for the characterization of such species are presented, as is a demonstration of the utility of biologically realistic sequence models parameterizing nSSU rRNA structure in resolving ambiguous phylogenetic relationships. Most importantly, this work also represents a significant improvement toward taxonomy congruent with evolutionary history for the Rhodophyta.
65

Advances in diapriid (Hymenoptera: diapriidae) systematics, with contributions to cybertaxonomy and the analysis of rRNA sequence data

Yoder, Matthew Jon 15 May 2009 (has links)
Diapriids (Hymenoptera: Diapriidae) are small parasitic wasps. Though found throughout the world they are relatively unknown. A framework for advancing diapriid systematics is developed by introducing a new web-based application/database capable of storing a broad range of systematic data, and the first molecular phylogeny specifically focused at examining intrafamilial relationships. In addition to these efforts, a description of a new taxon is provided. Several advantages of digital description, including linking descriptions to an ontology of morphological terms, are highlighted. The functionality of the database is further illustrated in the production of a catalog of diapriid host associations. The hosts database currently holds over 450 association records, for over 500 named taxa (parasitoids and hosts), and over 180 references. Diapriids are found to be primarily endoparasitoids of Diptera emerging from the host pupa. Phylogenetic inference for a molecular dataset of 28S and 18S rRNA sequence data, derived from a diverse selection of diapriids, is accomplished with a new suite of tools developed for handling complex rRNA datasets. Several parsimony-based methodologies, including an alignment-free method of analyzing multiple sequences, are reviewed and applied using the new software tools. Diapriid phylogenetic relationships are shown to be broadly congruent with existing morphology-based classifications. Methods for analyzing typically excluded sequence data are shown to recover phylogenetic signal that would otherwise be lost and the alignment-free method performed remarkably well in this regard. Empirically, phylogenetic approaches that incorporate structural data were not notably different than those that did not.
66

Phylogenetics of Pinguipedidae from Taiwan

Kuo, Hsiao-Ching 24 July 2007 (has links)
Family Pinguipedidae belong to the class Actinopterygii, subclass Neopterygii, order Perciformes, suborder Trachinoidei. Currently the interrelationships of the genera within this family and among the families in the Trachinoidei remain unequivocal. Also, whether the Cheimarrichthys should be included in the family Pinguipedidae has also been a controversial issue. This study aimed to reconstruct phylogenetic hypotheses in order to resolve these questions. Species of the Parapercis and Kochichtys in the family Pinguipedidae occur Taiwan. This study used osteological characters, 16S rRNA and Cyt b sequences to conduct phylogenetic analysis such that hypotheses can be proposed. The results revealed the monophyly of Parapercis, a taxonomic view consistent to the prevailary classification. Summarizing all the results, the 17 Parapercis species analysed can be divided into 4 groups. They are (1) Parapercis aurantiaca¡BP. decemfasciata¡BP. mimaseana¡BP. multifasciata¡BP. muronis¡Btwo morphotypes of P. sexfasciata¡F(2) P. cephalopunctata¡BP. clathrata¡BP. hexophthalma¡BP. kamoharai¡BP. tetracantha¡BP. xanthozona¡F(3) P. cylindrica and P. snyderi¡F(4) P. maculata¡BP. ommatura and P. somaliensis. Two color morphotypes have been shown for Parapercis sexfasciata. Data of the present study revealed that the ¡§ autapomorphic¡¨ osteological character known only in Kochichtys also occurred in three Parapercis species. This result supports a close relationship between these species. However, it also challenges the validity of the generic status of Kochichtys. About the dabate of the phylogenetic position of Cheimarrichthys, it should be put into its own family, Cheimarichthyide, rather than placed in the Pinguipedidae. The hypothesis for the sister group of Pinguipedidae to the Cheimarichthyide is not supported by all the data in this study completely. Morphological and molecular evidences are incongruence for closest phylogenetic relationship. Similar results were also obtained when the molecular sequences were analysed using different methods. More data analyses are needed for complete and reliable results. The present study suggests that the Trachinoidei is not a monophyletic group.
67

rRNA Disruption: A Predictive Marker of Response to Taxane Chemotherapy

Narendrula, Rashmi 19 March 2014 (has links)
A recent clinical trial for locally advanced breast cancer patients treated with epirubicin and docetaxel prior to surgery reported significant dose-dependent reductions in tumour RNA integrity values which correlated with pathological complete response. The purpose of the present study was to assess whether similar chemotherapy-dependent alterations in RNA integrity could occur in vitro and to assess its relationship, if any, to apoptosis. Treatment of wildtype A2780 ovarian carcinoma cells with taxanes resulted in dose- and time-dependent RNA degradation, identified as several unique bands on electropherograms having mobilities lower than the 28S and 18S rRNAs. We refer to this chemotherapy-dependent generation of aberrant RNA bands on electropherograms as “RNA disruption”. RNA disruption was found to be temporally associated with the induction of apoptosis, as determined by the appearance of a sub G1 peak of DNA content, positive annexin-V staining, and both PARP-1 and caspase-3 cleavage. Treatment of cells with a caspase-3 inhibitor resulted in a significant reduction in rRNA disruption, suggesting the involvement of caspase-3 or related caspases in RNA disruption. In contrast, docetaxel-dependent rRNA disruption was absent when docetaxel was administered to docetaxel-resistant A2780DXL cells, indicating that changes in RNA integrity may possibly differentiate between responsive and non-responsive tumours in cancer patients.
68

Transcript Termination by RNA polymerase I in the fission yeast, Schizosaccharomyces pombe

Vazin, Mahsa 24 July 2013 (has links)
Several mechanisms have been proposed for the pol I transcript termination in Schizosaccharomyces pombe. Two well known models are “Pause and Release” and “Torpedo”. Each mechanism explains the role of some of the cis- and trans-factors in transcript termination and the eventual maturation of the ribosomal RNA, but neither mechanism can explain all the experimental observations. A recent study has suggested that each of the two mechanisms can terminate the pol I transcription independently but with significantly less efficiency than the presence of both mechanisms. To help clarify the reasons for the discrepancies in these data, in this study the suggested mechanisms were examined further in three areas by using alternative techniques. First, the effect of uracil concentration or selection times on the transformation frequency of alternative 3’external transcribed spacer (3’ETS) constructs were assessed. Consistent with the previous results a construct containing the full 3’ETS showed the higher transformation frequencies compared with a construct containing only the hairpin or only the termination sites. However, results showed neither the uracil concentration nor selection times have a significant effect on the transformation frequency. Second, to further confirm the “pause and release” mechanism, the termination sites identified by S1 nuclease studies were analyzed using ligation-mediated RT-PCR. The 3’ terminus of the mature 25S rRNA was demonstrated readily but, unexpectedly, the 3’termini of the 3’ETS precursor molecules were not detected, possibly because of their specific structure. Finally, the 3’ extended rRNA precursors were studied by semi-quantitative RT-PCR. These appeared not to correspond with past nuclease protection analyses nor did they demonstrate downstream exonuclease function, observations which question our current understanding of Pol I transcript termination.
69

Metagenomic approaches to microbial source tracking

Davis, Carina January 2013 (has links)
Water sources are susceptible to faecal contamination from animal and human pollution sources. Pollution of our waterways has significant implications on human health, especially from a pathogen perspective. Microbial source tracking (MST) is a promising field which aims to identify the sources of faecal contamination, and thereby allowing for the development of effective management strategies to minimise pollution and the impact on human health. Many of the currently used methods rely on the identification of host-specific markers within the 16S ribosomal RNA (rRNA) gene of bacteria by use of amplification techniques such as polymerase chain reaction (PCR). However, these methods can be limited by sensitivity, quantification, geographical differences and issues of cost which can limit how many markers are evaluated. Developments in DNA sequencing technologies over the past decade have led to a number of next generation sequencing (NGS) platforms which have a rapid, high throughput approach, resulting in an exponential decrease in the cost of sequencing. This has enabled the development of sequence-based metagenomics, where entire communities from environmental samples can be analysed based on their genetic material. The ability to barcode allows for analysis of multiple samples at once, reducing the cost of sequencing environmental samples even further. This is a promising technique for MST, which has had little investigation to date. The primary focus of the studies described in this thesis was to evaluate the use of NGS technology through a metagenomic approach. Roche 454 amplicon sequencing was used to sequence a 16S rRNA gene target, amplified from faecal and water samples from various sources in New Zealand. Barcode strategies were incorporated in the amplification design to allow multiple samples to be sequenced simultaneously. A proof-of-concept study initially utilised a small sequence dataset to evaluate a range of analysis tools available. Taxonomic identification and diversity measures were used to evaluate a selection of currently available tools designed for analysing metagenomic data, with the Quantitative Insights Into Microbial Ecology (QIIME) platform decided upon for further studies. A larger study, including 35 faecal samples from 13 difference sources and 10 water samples, resulted in 522,065 raw sequencing reads. Diversity results suggest three phyla, Bacteroidetes, Firmicutes and Proteobacteria, are strongly represented across all faecal sources analysed. Microbial diversity analysis using clustering techniques provided evidence of host source being the largest influence on bacterial diversity, with samples from each source generally clustering together. This technique could not be used to identify sources of contamination sources in water samples as the water samples all clustered separately from the faecal samples. More successful was the use of taxonomic classifications to determine bacteria genera that were potentially specific to one source. Water samples were screened for these genera, with six out of the ten water samples being indicators of either ruminant or human contamination. Faecal and water samples were also analysed for a selection of published 16S rRNA PCR markers, using a computational motif-based search method. Of the twenty motifs screened for, 14 were found to be relatively source-specific for ruminant, human, dog or pig faecal samples, with some cross-reactivity with chicken and possum samples. Using this method, the contamination source for six of the ten water samples was identified, with the remaining four samples found to not have enough sequences to assess with confidence. Both metagenomic strategies produced comparable results which were consistent with previous MST analysis. This project demonstrates the potential application of next generation sequencing technologies to microbial source tracking, suggesting the possibility this approach to replace existing microbial source tracking methods.
70

Characterizing the phylogenetic distribution of cryptic species in the Rhodophyta using novel gene sequence analysis and molecular morphometrics

Lynch, Michael January 2011 (has links)
The Rhodophyta (red algae) are an ancient crown group of the Eukarya (ca. 1400-1500 million years), comprised of 5000 - 6000 species. Gametophytes of taxa excluding the speciose Class Florideophyceae are typically of very simple unicellular, filamentous or foliose morphologies. These simple morphologies are often homoplasious (resulting from convergent or parallel evolution) and can be indistinguishable among distinct taxa, leading to cryptic species. As a result, historical morphology-based taxonomy is often not congruent with evolutionary history. Intraspecific genetic variation is not yet characterized for non-Florideophyceae taxa. Here the intraspecific genetic variation was characterized for a locally endemic, morphologically distinct bangiophyte red alga, Bangia maxima Gardner using inter simple sequence repeat (ISSR) patterns from 91 individual filaments across seven local populations. A high degree of genetic variation was observed over very small distances (< 25 cm) and very little genetic exchange was observed between populations. It is possible that B. maxima is a true endemic species and its population dynamics may differ from other Bangia species. Metrics of sequence-based identification rely on genetic divergence among isolates to distinguish taxonomic units independent of morphology. Such metrics are especially useful for morphologically simple or cryptic species. The mitochondrial cytochrome oxidase c subunit 1 gene has been proposed for the Florideophyceae. An evaluation of this gene as a metric for non-Florideophyceae taxa was undertaken and limited utility was demonstrated in most lineages of Rhodophyta due to poor or inconsistent amplification and conflicts with nuclear and plastid phylogenies. Patterns of genetic divergence among taxa are used to infer evolutionary relationships. The nuclear ribosomal small subunit (nSSU rRNA) is the taxonomically broadest pool of gene sequence data for the Rhodophyta. The use of stochastic models of nucleotide evolution is the most common approach to inferring phylogenies using this gene, ignoring much of its evolutionary information as different characters that contribute to secondary structure (e.g. paired nucleotides) are treated independently. The incorporation of structural information leads to more biologically realistic evolutionary models increasing phylogenetic resolution. Parametric models incorporating structural information were used here to more fully resolve phylogenies for all known Rhodophyta lineages. Novel phylogenetic topologies were observed and well supported for each Class within the Rhodophyta resulting in a number of formally proposed or suggested taxonomic revisions. These include phylogenetic resolution of Rhodophyta Classes, support for the introduction of 11 genera within the Bangiales and support for various taxonomic revisions within the Florideophyceae previously proposed but not yet fully adopted. As structure evolves more slowly than its constituent sequence, secondary structure elements can further resolve evolutionary relationships, especially in lineages as old as the Rhodophyta. A novel encoding of secondary structure elements and subsequent multivariate analysis was performed for all known Rhodophyta nSSU rRNA gene sequences, reinforcing phylogenetic results. Computer programs developed for these analyses are publicly available. The analyses presented here significantly advanced understanding of the evolutionary distribution of cryptic species within the Rhodophyta. Furthermore, useful methods for the characterization of such species are presented, as is a demonstration of the utility of biologically realistic sequence models parameterizing nSSU rRNA structure in resolving ambiguous phylogenetic relationships. Most importantly, this work also represents a significant improvement toward taxonomy congruent with evolutionary history for the Rhodophyta.

Page generated in 0.065 seconds