• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 148
  • 97
  • 18
  • 13
  • 10
  • 8
  • 7
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 357
  • 357
  • 75
  • 73
  • 49
  • 48
  • 46
  • 40
  • 38
  • 31
  • 28
  • 28
  • 27
  • 26
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Investigation of hoxa2 gene function in palate development using a retroviral gene delivery system

Wang, Xia 19 April 2006
Cleft palate is a common human birth defect caused by any process which interferes with palatogenesis. Studies in Hoxa2 mutant (Hoxa2-/-) mice which exhibit a secondary cleft palate were reported to be due to an abnormal positioning of the tongue which prevents normal palatal shelf fusion to occur. To obtain direct evidence for the importance of Hoxa2 in murine palate development, an in vitro whole organ palatal culture model was developed, eliminating any influences from the tongue. A retroviral gene delivery system was employed, containing either Hoxa2 sense or Hoxa2 antisense cDNA, to respectively enhance or knockdown the expression of Hoxa2 mRNA in the developing palate. <p>Our results show that palatal cultures infected with the lowest titer of Hoxa2 sense virus induce a fusion rate of 72.7%, which is similar to palatal cultures treated with the control virus (81.8%), although fusion rates of 41.2% to 50.0% were observed in palates infected with higher titers. With the antisense virus treated group, a more profound inhibition of the fusion rate was observed (27.7% - 46.1%), which is comparable with the frequency of palatal fusion in Hoxa2-/- mice (44.4%). Additionally, the palatal shelves in both sense and antisense virus treated groups appear to be relatively shorter in length, than those measured in the control group. Interestingly, in the antisense virus treated group, the ratio of the length of the fused portion to the length of palatal shelves appears to be relatively large compared to the control group. Verification and quantification of Hoxa2 mRNA in the developing palate between E12.5 and E15.5 was performed by real-time RT-PCR. Hoxa2 gene expression was observed at all stages studied, with expression being the highest at E12.5 and declining from E13.5. The expression level remained constant from E13.5 through E15.5. These findings demonstrate for the first time that Hoxa2 may play a direct role in murine palate development. Results suggest that both factors (the absence of Hoxa2 gene in the palate causing delayed palatal development, as well as the position of the tongue) appear to act in unison to produce cleft palate in Hoxa2 knockout mice.
142

Bartonella Henselae Inhibits Cellular Apoptotic Regulators to Ensure Survival

Parker, Jeffery Todd 01 December 2009 (has links)
Human pathogens survive anti-pathogen host immune assault by either circumventing or evading the host immune response. Bartonella henselae, an intracellular pathogen previously shown to disrupt intrinsic apoptotic messengers to enhance its survival, exploits multiple facets of the cellular apoptotic mechanisms. Cellular pathways affected by apoptotic processes were assessed using real-time reverse-transcriptase-polymerase-chain-reaction (rRT-PCR) to measure the effect of B. henselae on cell regulator gene expression (TRADD, FADD, caspase-8 and caspase-3), caspase activity, DNA cell cycle analysis, cell regulator protein expression and overall cell viability and morphology. The presence of B. henselae suppresses overall gene expression for TRADD and FADD and it dramatically suppresses ceramide-induced TRADD and FADD gene expression. The presence of B. henselae has a noticeable effect on ceramide-induced caspase-8 and caspase-3 gene expression. Only caspase-3 enzymatic activity was ceramide-induced and likewise supressed by the presence of B. henselae, whereas caspase-6 and caspase-8 were unaffected and equivalent to controls. The presence of B. henselae inhibits ceramide-induced DNA fragmentation, maintains overall cell morphology and enhances host cell viability. Lastly, B. henselae inhibits the time-dependant ceramide-induction of TRADD protein and suppresses ubiquitous FADD protein expression. We demonstrated that B. henselae inhibits apoptotic induction in a systematic manner following exogenous apoptotic induction. B. henselae protection of microvascular endothelial cells from apoptosis induction begins at the modulation of cell surface receptor-dependent signaling. B. henselae minimizes, but does not completely abrogate, the cytotoxic effect of the apoptogenic shingolipid ceramide on human microvascular endothelial cells (CDC.EU.HMEC-1). Broadening our understanding of the sequence of cell regulator suppression events by intracellular pathogens will provide insight into disease manifestation. Further, understanding how infected cells initiate and conclude apoptosis will open new avenues into the study of disease treatment.
143

Identification Of The Genes Involved In &amp / #65533 / phytosiderophore&amp / #65533 / Synthesis And Metal Ion Uptake In Wheat Using Rt-pcr

Aktas, Yasemin 01 September 2003 (has links) (PDF)
Soils in many agricultural areas have high pH, resulting in low availability of zinc and iron. Plants grown on such soils suffer from either Zn or Fe deficiency or both. The efficient plant genotypes grown normally in calcerous soils were found to evolve some strategies to acquire the iron which is in insoluble form. Iron efficient graminaceous monocots release iron chelating substances, mugineic acid family phytosiderophores (MAs), in response to iron deficiency stress. Several researchers have suggested that phytosiderophores also can play role in grass Zn nutrition and thus it may be possible that it is the uptake mechanism for Zn efficiency. Several possible genes that take role in phytosiderophore synthesis or found to be induced under iron deficient conditions were identified in several organisms but not on wheat. In this study, the efficient barley cultivar Tokak-157, efficient wheat cultivar Kira&ccedil / -66 and relatively less efficient wheat cultivar BDMM-19 were grown in normal growth conditions for 1 week and transfered to zinc deficient, iron deficient and both zinc and iron deficient nutrient solutions. After growing 1 week on these conditions, plants grown on both zinc and iron deficient nutrient solutions were retransfered to zinc and iron sufficient conditions. Degenerate primers were designed for the conserved regions of previously identified genes that take role in phytosiderophore synthesis or induced under iron deficient conditions and RT-PCRs were performed. The complete open reading frame of IDI-1(Iron deficiency induced-1) gene and the putative gene fragment for SAM-s (S-adenosylmethionine synthetase) were identified.
144

Investigation of hoxa2 gene function in palate development using a retroviral gene delivery system

Wang, Xia 19 April 2006 (has links)
Cleft palate is a common human birth defect caused by any process which interferes with palatogenesis. Studies in Hoxa2 mutant (Hoxa2-/-) mice which exhibit a secondary cleft palate were reported to be due to an abnormal positioning of the tongue which prevents normal palatal shelf fusion to occur. To obtain direct evidence for the importance of Hoxa2 in murine palate development, an in vitro whole organ palatal culture model was developed, eliminating any influences from the tongue. A retroviral gene delivery system was employed, containing either Hoxa2 sense or Hoxa2 antisense cDNA, to respectively enhance or knockdown the expression of Hoxa2 mRNA in the developing palate. <p>Our results show that palatal cultures infected with the lowest titer of Hoxa2 sense virus induce a fusion rate of 72.7%, which is similar to palatal cultures treated with the control virus (81.8%), although fusion rates of 41.2% to 50.0% were observed in palates infected with higher titers. With the antisense virus treated group, a more profound inhibition of the fusion rate was observed (27.7% - 46.1%), which is comparable with the frequency of palatal fusion in Hoxa2-/- mice (44.4%). Additionally, the palatal shelves in both sense and antisense virus treated groups appear to be relatively shorter in length, than those measured in the control group. Interestingly, in the antisense virus treated group, the ratio of the length of the fused portion to the length of palatal shelves appears to be relatively large compared to the control group. Verification and quantification of Hoxa2 mRNA in the developing palate between E12.5 and E15.5 was performed by real-time RT-PCR. Hoxa2 gene expression was observed at all stages studied, with expression being the highest at E12.5 and declining from E13.5. The expression level remained constant from E13.5 through E15.5. These findings demonstrate for the first time that Hoxa2 may play a direct role in murine palate development. Results suggest that both factors (the absence of Hoxa2 gene in the palate causing delayed palatal development, as well as the position of the tongue) appear to act in unison to produce cleft palate in Hoxa2 knockout mice.
145

Expression of defense genes in sorghum grain mold and tagging and mapping a sorghum anthracnose resistance gene

Katile, Seriba Ousmane 15 May 2009 (has links)
Sorghum grain mold and anthracnose are two major diseases of sorghum (Sorghum bicolor) that constrain sorghum production worldwide. Grain mold is caused by several species of fungi, but the two most common are Curvularia lunata and Fusarium thapsinum. Isolates of these two species were used to inoculate panicles of selected sorghum cultivars in green house and field experimentations. Panicles were sprayed at the time of anthesis with conidial suspensions of the two fungal species individually or in a mixture and with water to serve as a control. Samples were collected 48 hours after inoculation for RNA extraction. In greenhouse studies, four cultivars (Tx2911, Sureno, SC170 and RTx430) were used while thirteen cultivars were grown in the field experiments. Gene expression was measured for the following genes using real time polymerase chain reactions (rt-PCR): PR10, β-glucanase, chitinase, thaumatin, sormatin, phenyalanine ammonia lyase (PAL), obtusifoliol 14α-demethylase (Obtus), antifungal protein (AFP), apoptosis related protein (Apop) and leucine rich repeat (LRR). Seed germination tests in field grown cultivars indicated that germination rates for SC279-14E, SC660 and Sureno were not greatly influenced by grain mold. Covering the panicles with bags served to protect them against grain mold pathogens. The seed mycoflora test showed that Fusarium thapsinum was the most frequently recovered species and there were more species present in non-covered panicles. The response of sorghum cultivars to grain mold infection involves multiple defense genes. Real time PCR used to study the expression of sorghum defense in greenhouse grown plants showed that mRNA encoding PR-10, a small 10 kDa protein, was highly expressed in the glumes and spikelets of resistant cultivars Tx2911 and Sureno and constitutively in leaves. The expression of some other defense genes like beta-glucanase, chitinase and AFP was variable. Sormatin was not expressed. Expression of β-glucanase, chitinase, and PR10 was higher in field than in greenhouse experiments. A second area of research involved tagging of a resistance gene for sorghum anthracnose. Three AFLP markers (Xtxa607, Xtxa3181 and Xtxa4327) and three SSRs (Xtxp3, Xtxp55 and Xtxp72) were identified. These markers were loosely linked to the resistance genes. The markers are located on linkage group B. The results suggest that markers located 20-30 cM on one side or the other of those tested should provide useful tags for the resistance gene.
146

Effect Of Cold Stress On Barley (hordeum Vulgare L.) Superoxide Dismutase Isozyme Activities And Expression Levels Of Cu/znsod Gene

Kayihan, Ceyhun 01 July 2007 (has links) (PDF)
In this study, effect of cold stress and recovery on the superoxide dismutase (SOD) activities and the expression levels of Cu/ZnSOD gene were investigated in two barley cultivars (Tarm-92-winter type, Zafer-160-spring type). Eight days old barley seedlings were subjected to two different cold stresses / chilling stress at 4&deg / C for 1, 3, 7 days and freezing stress at -3&deg / C and -7&deg / C. Analyses were performed both on leaf and root tissues. The SOD activities and isozyme patterns were determined by Native PAGE activity staining technique. Relative RT-PCR was used for the transcript levels of Cu/ZnSOD gene. The SOD activities and expression levels of control and cold stressed plants were compared by densitometric analysis. Under chilling stress, the activities of Cu/ZnSODx and Cu/ZnSOD2 did not have any significant change in leaf and root tissues of both cultivars. However, the expression levels of Cu/ZnSOD gene were more variable than activity results. After -3&deg / C freezing stress, the activities of SOD enzyme in leaf tissues of Tarm-92 increased significantly, however, these activities significantly decreased in leaves of Zafer-160. These results suggested that both cultivars were not affected by chilling stress in terms of SOD enzyme activities and expression levels. Furthermore, under freezing stress conditions, the increment of SOD activities and expression levels in Zafer-160 was higher than Tarm-92. In conclusion, the changes in SOD isozyme activities and expression levels may not be enough for understanding of the cold stress mechanism. Therefore, further studies have to be carried on other antioxidant enzyme systems.
147

Expression of defense genes in sorghum grain mold and tagging and mapping a sorghum anthracnose resistance gene

Katile, Seriba Ousmane 10 October 2008 (has links)
Sorghum grain mold and anthracnose are two major diseases of sorghum (Sorghum bicolor) that constrain sorghum production worldwide. Grain mold is caused by several species of fungi, but the two most common are Curvularia lunata and Fusarium thapsinum. Isolates of these two species were used to inoculate panicles of selected sorghum cultivars in green house and field experimentations. Panicles were sprayed at the time of anthesis with conidial suspensions of the two fungal species individually or in a mixture and with water to serve as a control. Samples were collected 48 hours after inoculation for RNA extraction. In greenhouse studies, four cultivars (Tx2911, Sureno, SC170 and RTx430) were used while thirteen cultivars were grown in the field experiments. Gene expression was measured for the following genes using real time polymerase chain reactions (rt-PCR): PR10, β-glucanase, chitinase, thaumatin, sormatin, phenyalanine ammonia lyase (PAL), obtusifoliol 14α-demethylase (Obtus), antifungal protein (AFP), apoptosis related protein (Apop) and leucine rich repeat (LRR). Seed germination tests in field grown cultivars indicated that germination rates for SC279-14E, SC660 and Sureno were not greatly influenced by grain mold. Covering the panicles with bags served to protect them against grain mold pathogens. The seed mycoflora test showed that Fusarium thapsinum was the most frequently recovered species and there were more species present in non-covered panicles. The response of sorghum cultivars to grain mold infection involves multiple defense genes. Real time PCR used to study the expression of sorghum defense in greenhouse grown plants showed that mRNA encoding PR-10, a small 10 kDa protein, was highly expressed in the glumes and spikelets of resistant cultivars Tx2911 and Sureno and constitutively in leaves. The expression of some other defense genes like beta-glucanase, chitinase and AFP was variable. Sormatin was not expressed. Expression of β-glucanase, chitinase, and PR10 was higher in field than in greenhouse experiments. A second area of research involved tagging of a resistance gene for sorghum anthracnose. Three AFLP markers (Xtxa607, Xtxa3181 and Xtxa4327) and three SSRs (Xtxp3, Xtxp55 and Xtxp72) were identified. These markers were loosely linked to the resistance genes. The markers are located on linkage group B. The results suggest that markers located 20-30 cM on one side or the other of those tested should provide useful tags for the resistance gene.
148

Evaluation and implementation of a molecular-based protocol for the identification of enteroviruses at the Florida Department of Health - Tampa Laboratory

Smith, Matthew Adams 01 January 2003 (has links)
The Enterovirus genus within the family Picornaviridae contains over 100 serotypes, of which sixty-four are known to be human pathogens. Infection with this group of RNA viruses produces a myriad of clinical conditions including poliomyelitis, meningitis, encephalitis, respiratory illnesses, and hand-foot-and-mouth disease. Outbreaks have been documented worldwide; significant morbidity and mortality exist to warrant laboratory surveillance. Traditionally, enteroviruses have been identified to the level of serotype by the serum neutralization assay. However, numerous problems are associated with this assay. The serum neutralization assay is labor intensive, results are often ambiguous, and reagents are becoming difficult to obtain. Recently, molecular-based typing protocols have been described that are cost effective and produce results that are more reliable. The overall objective of this thesis was to implement a molecular-based typing protocol to replace the serum neutralization method currently used. Three specific aims were identified to reach this objective. First, a database cataloging all enteroviruses isolated at the Florida Department of Health - Tampa Branch Laboratory from 1981 through 2002 was created. Serotype prevalence, specimen submission rates, and temporal trends were analyzed to demonstrate the public health importance of enterovirus surveillance. Next, five oligonucleotide primer sets were compared with respect to sensitivity, specificity, and overall utility in molecular typing protocols developed to accurately determine enterovirus type. Finally, the most effective molecular assay was used to conduct two basic molecular epidemiological analyses of intratypic variation of Coxsackievirus B5 isolates, and of intratypic variation of successive Echovirus 9 passages. The results from this study show that implementation of a molecular-based typing system for enteroviruses would be an improvement over current enterovirus serotyping methods. Results are obtained more rapidly and are more reliable. The implementation of such a system would improve the surveillance capabilities of the State of Florida Department of Health.
149

Adaptation of lactic acid bacteria for growth in beer

2012 August 1900 (has links)
Growth of bacteria in beer leads to turbidity and off-flavors, resulting in a spoiled and unpalatable product and thus economic loss. The most common beer-spoilage organisms (BSOs) are lactic acid bacteria (LAB), with Lactobacillus and Pediococcus species being the most problematic. Because of the harsh environment (low nutrients, antimicrobial compounds ethanol and hops, anaerobic), only select isolates are able to sustain growth in and spoil beer. To begin understanding the phenomenon of LAB adapting to overcome stresses in beer, ethanol tolerance, hop resistance, and nutrient acquisition mechanisms were investigated. First, ethanol tolerance was analyzed in the context of beer-spoilage ability, and it was found that it is intrinsically high in LAB, thus leading to the conclusion that LAB ability to spoil beer is not dependent on ethanol resistance levels. This was then followed by genome sequencing of the BSO Pediococcus claussenii ATCC BAA-344T (Pc344) to elucidate mechanisms being used to resist hops and acquire low abundance or alternative nutrients. Subsequent analysis of Pc344 and Lactobacillus brevis BSO 464 via reverse transcription quantitative PCR demonstrated the variability found among BSOs in the presence of beer-spoilage-related genes and their use during growth in beer. Further analysis of Pc344 was performed via RNA-sequencing to get a global view of gene expression during mid-logarithmic growth in beer. It was found that several alternative nutrients were being used by Pc344 to sustain growth, and that hop resistance was enabled by a variety of mechanisms including oxidative stress response and pH control. Finally, genomic comparison of BSOs determined that conservation is only present for closely related organisms and that no specific genes/proteins are indicative of an isolate’s beer-spoilage potential. It is more likely that horizontal gene transfer plays a major role in LAB adaption for growth in beer, and that plasmids are very important for this evolution, as was demonstrated by plasmid-variants of Pc344. The main conclusions of this thesis are therefore that hop resistance is the main factor determining ability to grow in beer, and that transfer of genetic elements is the driving force behind LAB evolving into BSOs.
150

THE AREA POSTREMA: A POTENTIAL SITE FOR CIRCADIAN REGULATION BY PROKINETICIN 2

INGVES, MATTHEW 20 August 2009 (has links)
Little is known regarding the neurophysiological mechanisms by which the neuropeptide prokineticin 2 (PK2) regulates circadian rhythms. Using whole-cell electrophysiology, we have investigated a potential role for regulation of neuronal excitability by PK2 on neurons of the area postrema (AP), a medullary structure known to influence autonomic processes in the central nervous system. In current-clamp recordings, focal application of 1µM PK2 reversibly influenced the excitability of the majority of dissociated AP cells tested, producing both depolarizations (38%) and hyperpolarizations (28%) in a concentration-dependent manner. Slow voltage ramps and ion substitution experiments revealed a PK2-induced Cl- current was responsible for membrane depolarization, while hyperpolarizations were the result of inhibition of an inwardly rectifying non-selective cation current. In contrast to these differential effects on membrane potential, nearly all neurons that displayed spontaneous activity responded to PK2 with a decrease in spike frequency. These observations are in accordance with voltage-clamp experiments showing that PK2 caused a leftward shift in Na+ channel activation and inactivation gating. Lastly, using post hoc single cell RT-PCR technology, we have shown that 7 out of 10 AP neurons depolarized by PK2 were enkephalin-expressing cells. The observed actions on enkephalin neurons indicate PK2 may have specific inhibitory actions on this population of neurons in the AP acting to reduce their sensitivity to incoming signals. These data suggest that PK2 regulates the level of AP neuronal excitability and may impart a circadian influence on AP autonomic control. / Thesis (Master, Physiology) -- Queen's University, 2009-08-18 11:18:05.977

Page generated in 0.0269 seconds