• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

HÉLICES, CURVAS DE BERTRAND E SUPERFÍCIES REGRADAS / HELICES, BERTRAND CURVES AND RULED SURFACES

Flôres, Marcia Viaro 27 February 2012 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This work is designed to study helices and Bertrand curves. A circular helix is characterized by having constant curvature k 6= 0 and constant torsion t . If the ratio t k is constant, the curve is called generalized helix. A curve g : I −→R3 is called a Bertrand curve if there is another curve g : I −→R3 such that the normal lines of g and g at s ∈ I are equal. Generalized helices and Bertrand curves can be viewed as generalizations of the circular helix. In this work, we obtain important characterizations of these curves. Besides, we also study these curves from the view point of the theory of curves on ruled surfaces. / O presente trabalho destina-se a um estudo sobre hélices e curvas de Bertrand. Uma hélice circular é caracterizada por ter curvatura k 6= 0 e torção t constantes. Se a razão t k for constante, a curva é chamada hélice generalizada. Uma curva g : I −→ R3 é chamada curva de Bertrand se existe uma outra curva g : I −→ R3 tal que as retas normais de g e g em s ∈ I são iguais. Tanto a hélice generalizada como a curva de Bertrand podem ser vistas como generalizações da hélice circular. Neste trabalho, além de obtermos importantes caracterizações destas curvas, realizamos também um estudo destas do ponto de vista da teoria de curvas em superfícies regradas.
2

Flecnodal and LIE-curves of ruled surfaces / Fleknodal- und LIE-Kurven von Regelflächen

Khattab, Ashraf 09 November 2005 (has links) (PDF)
If we consider ruled surfaces of the projective 3-space as a one parameter family of lines, then they appear in the well-known KLEIN-model of lines in the projective 3-space as curves of a hyperquadric in the projective 5-space. The osculating spaces of such a curve are represented in the projective 3-space by spaces of linear complexes. Those points of a generator e of the ruled surface, in which the tangent bundles are in the same time complex line bundles in the accompanying osculating line complex of the ruled surface along e, are called the LIE-points of e. The LIE-points fulfil two (real or imaginary conjugate) curves on the ruled surface called the LIE-curves. The support of the osculating-3-space of the ruled surface along a regular non-torsal generator e are two, one or zero straight lines in the osculating regulus. If thes straight lines exist, one calls them the flecnode tangents of the ruled surface. On a hyperbolic ruled surface build the points of contact of the flecnode tangents two projective distinguished curves called the flecnode curves. In this work we present the different methods of treating these curves in the history, and we give a new explicit calculation of the flecnode points and the LIE-points depending on the basis of a PLÜCKER-coordinates representation of the ruled surface. In addition we study the questions that appears by considering the LIE-curves of a ruled surface to form a pair of BERTRAND curves for which this ruled surface is the surface of common main normals. For example, the question about ruled surfaces, whose LIE-curves are orthogonal to the generators will be answered here. / Regelflächen des projektiven 3-Raums erscheinen, als (eindimensionalen) Geradenmengen aufgefasst, im bekannten KLEINschen Punktmodell der Geradenmenge vom projektiven 3-Raum als Kurven einer Hyperquadrik in einem projektiven 5-Raum. Die Schmiegräume einer solchen Kurve werden im projektiven 3-Raum durch Räume linearer Komplexe repräsentiert. Diejenigen Punkte einer Erzeugende e der Regelfläche, in denen die Tangentenbüschel gleichzeitig auch Komplexgeradenbüschel im begleitenden Schmiegkomplex von e sind, heißen LIE-Punkte von e. Die LIE-Punkte erfüllen zwei (reelle oder konjugiert imaginäre) Kurvenzüge auf der Regelfläche, die LIE-Kurven. Die Träger des Schmieg-3-Raums der Regelfläche längs einer reguläre nichttorsalen Erzeugende e sind zwei, eine oder null Geraden im Schmiegregulus. Sofern diese Geraden existieren, nennt man sie die Fleknodaltangenten der Regelfläche. Auf hyperbolischen Regelflächen bilden die Berührpunkte der Fleknodaltangenten zwei projektiv ausgezeichnete Kurven, die Fleknodalkurven. In der vorliegenden Arbeit stellen wir die unterschiedlichen Behandelungen diesen ausgezeichneten Kurven in der Geschichte dar, und geben wir eine neue explizite Berechnung von den Fleknodal- bzw. LIE-Punkte auf der Basis einer PLÜCKER-Koordinaten-Darstellung der Regelfläche. Außerdem untersuchen wir die Fragestellungen, die man bekommt, wenn man versucht, dass das paarweise auftreten der LIE-Kurven irgendwie in Analogie zum klassischen euklidischen BERTRAND-Kurvenpaar zu stellen. Z.B. lässt sich die Frage nach Regelflächen, deren LIE-Kurven Orthogonaltrajektorien der Erzeugenden sind, hier beantwortet.
3

Superfícies Regradas de Bonnet / Superfícies Regradas de Bonnet / Bonnet Ruled Surfaces / Bonnet Ruled Surfaces

LEITE, Elaine Altino Freire 31 March 2011 (has links)
Made available in DSpace on 2014-07-29T16:02:17Z (GMT). No. of bitstreams: 1 dissertacao elaine.pdf: 373939 bytes, checksum: b28fbe329bf631f44f6ca1941e9060b5 (MD5) Previous issue date: 2011-03-31 / In this work we show that a Surface is a Bonnet Surface if, and only if A-net, presenting in Soyuçok s work [6]. Using this result we study the Bonnet Ruled Surfaces, based in Kanbay s work [1]. / Neste trabalho, mostraremos que uma superfície é de Bonnet se, e somente se for uma Anet, apresentado no trabalho Soyuçok [6]. Usando este resultado estudamos as Superfícies Regradas de Bonnet, baseado no trabalho de Kanbay [1].
4

Flecnodal and LIE-curves of ruled surfaces

Khattab, Ashraf 25 November 2005 (has links)
If we consider ruled surfaces of the projective 3-space as a one parameter family of lines, then they appear in the well-known KLEIN-model of lines in the projective 3-space as curves of a hyperquadric in the projective 5-space. The osculating spaces of such a curve are represented in the projective 3-space by spaces of linear complexes. Those points of a generator e of the ruled surface, in which the tangent bundles are in the same time complex line bundles in the accompanying osculating line complex of the ruled surface along e, are called the LIE-points of e. The LIE-points fulfil two (real or imaginary conjugate) curves on the ruled surface called the LIE-curves. The support of the osculating-3-space of the ruled surface along a regular non-torsal generator e are two, one or zero straight lines in the osculating regulus. If thes straight lines exist, one calls them the flecnode tangents of the ruled surface. On a hyperbolic ruled surface build the points of contact of the flecnode tangents two projective distinguished curves called the flecnode curves. In this work we present the different methods of treating these curves in the history, and we give a new explicit calculation of the flecnode points and the LIE-points depending on the basis of a PLÜCKER-coordinates representation of the ruled surface. In addition we study the questions that appears by considering the LIE-curves of a ruled surface to form a pair of BERTRAND curves for which this ruled surface is the surface of common main normals. For example, the question about ruled surfaces, whose LIE-curves are orthogonal to the generators will be answered here. / Regelflächen des projektiven 3-Raums erscheinen, als (eindimensionalen) Geradenmengen aufgefasst, im bekannten KLEINschen Punktmodell der Geradenmenge vom projektiven 3-Raum als Kurven einer Hyperquadrik in einem projektiven 5-Raum. Die Schmiegräume einer solchen Kurve werden im projektiven 3-Raum durch Räume linearer Komplexe repräsentiert. Diejenigen Punkte einer Erzeugende e der Regelfläche, in denen die Tangentenbüschel gleichzeitig auch Komplexgeradenbüschel im begleitenden Schmiegkomplex von e sind, heißen LIE-Punkte von e. Die LIE-Punkte erfüllen zwei (reelle oder konjugiert imaginäre) Kurvenzüge auf der Regelfläche, die LIE-Kurven. Die Träger des Schmieg-3-Raums der Regelfläche längs einer reguläre nichttorsalen Erzeugende e sind zwei, eine oder null Geraden im Schmiegregulus. Sofern diese Geraden existieren, nennt man sie die Fleknodaltangenten der Regelfläche. Auf hyperbolischen Regelflächen bilden die Berührpunkte der Fleknodaltangenten zwei projektiv ausgezeichnete Kurven, die Fleknodalkurven. In der vorliegenden Arbeit stellen wir die unterschiedlichen Behandelungen diesen ausgezeichneten Kurven in der Geschichte dar, und geben wir eine neue explizite Berechnung von den Fleknodal- bzw. LIE-Punkte auf der Basis einer PLÜCKER-Koordinaten-Darstellung der Regelfläche. Außerdem untersuchen wir die Fragestellungen, die man bekommt, wenn man versucht, dass das paarweise auftreten der LIE-Kurven irgendwie in Analogie zum klassischen euklidischen BERTRAND-Kurvenpaar zu stellen. Z.B. lässt sich die Frage nach Regelflächen, deren LIE-Kurven Orthogonaltrajektorien der Erzeugenden sind, hier beantwortet.
5

Liniengeometrie für den Leichtbau

Lordick, Daniel, Klawitter, Daniel, Hagemann, Markus 21 July 2022 (has links)
Regelflächen, das sind durch die Bewegung von Geraden erzeugte Flächen, haben für den Betonleichtbau unter den Gesichtspunkten Statik und Herstellung herausragende Eigenschaften: Auch wenn sie doppelt gekrümmt sind, können sie geradlinig bewehrt oder vorgespannt werden. Außerdem kann die Schalung beispielsweise durch Heißdrahtschneiden aus Polystyrol-Hartschaum gewonnen werden. In gängigen CAD-Systemen ist die Klasse der Regelflächen bislang nicht angemessen repräsentiert und steht deshalb für die Bauteilgestaltung nur eingeschränkt zur Verfügung. Liniengeometrie für den Leichtbau liefert nun ein mathematisches Modell, das Regelflächen und auf sie wirkende Kräfte abbildet, und entwickelt daraus Formfindungswerkzeuge, die in einer vertrauten Entwurfsumgebung das Prinzip form follows force unterstützen. [Aus. Einführung] / Ruled surfaces, which are surfaces created by the movement of straight lines, have outstanding properties for lightweight concrete construction from the viewpoints of statics and production: even if they are double-curved, they can be reinforced or prestressed in a rectilinear fashion. In addition, the formwork can be obtained ef ciently from rigid polystyrene foam by hot wire cutting, for example. In current CAD systems, the class of ruled surfaces has not yet been adequately implemented and is therefore only available to a limited extent for component design. This project Line Geometry for Lightweight Structures provides a mathematical model that represents ruled surfaces and the forces acting on them, and uses this to develop form finding tools that support the principle of form follows force in a familiar design environment. [Off: Introduction]
6

On Ruled Surfaces in three-dimensional Minkowski Space

Shonoda, Emad N. Naseem 22 December 2010 (has links) (PDF)
In a Minkowski three dimensional space, whose metric is based on a strictly convex and centrally symmetric unit ball , we deal with ruled surfaces Φ in the sense of E. Kruppa. This means that we have to look for Minkowski analogues of the classical differential invariants of ruled surfaces in a Euclidean space. Here, at first – after an introduction to concepts of a Minkowski space, like semi-orthogonalities and a semi-inner-product based on the so-called cosine-Minkowski function - we construct an orthogonal 3D moving frame using Birkhoff’s left-orthogonality. This moving frame is canonically connected to ruled surfaces: beginning with the generator direction and the asymptotic plane of this generator g we complete this flag to a frame using the left-orthogonality defined by ; ( is described either by its supporting function or a parameter representation). The plane left-orthogonal to the asymptotic plane through generator g(t) is called Minkowski central plane and touches Φ in the striction point s(t) of g(t). Thus the moving frame defines the Minkowski striction curve S of the considered ruled surface Φ similar to the Euclidean case. The coefficients occurring in the Minkowski analogues to Frenet-Serret formulae of the moving frame of Φ in a Minkowski space are called “M-curvatures” and “M-torsions”. Here we essentially make use of the semi-inner product and the sine-Minkowski and cosine-Minkowski functions. Furthermore we define a covariant differentiation in a Minkowski 3-space using a new vector called “deformation vector” and locally measuring the deviation of the Minkowski space from a Euclidean space. With this covariant differentiation it is possible to declare an “M-geodesicc parallelity” and to show that the vector field of the generators of a skew ruled surface Φ is an M-geodesic parallel field along its Minkowski striction curve s. Finally we also define the Pirondini set of ruled surfaces to a given surface Φ. The surfaces of such a set have the M-striction curve and the strip of M-central planes in common
7

Geometry of universal torsors / Geometrie universeller Torsore

Derenthal, Ulrich 13 October 2006 (has links)
No description available.
8

On Ruled Surfaces in three-dimensional Minkowski Space

Shonoda, Emad N. Naseem 13 December 2010 (has links)
In a Minkowski three dimensional space, whose metric is based on a strictly convex and centrally symmetric unit ball , we deal with ruled surfaces Φ in the sense of E. Kruppa. This means that we have to look for Minkowski analogues of the classical differential invariants of ruled surfaces in a Euclidean space. Here, at first – after an introduction to concepts of a Minkowski space, like semi-orthogonalities and a semi-inner-product based on the so-called cosine-Minkowski function - we construct an orthogonal 3D moving frame using Birkhoff’s left-orthogonality. This moving frame is canonically connected to ruled surfaces: beginning with the generator direction and the asymptotic plane of this generator g we complete this flag to a frame using the left-orthogonality defined by ; ( is described either by its supporting function or a parameter representation). The plane left-orthogonal to the asymptotic plane through generator g(t) is called Minkowski central plane and touches Φ in the striction point s(t) of g(t). Thus the moving frame defines the Minkowski striction curve S of the considered ruled surface Φ similar to the Euclidean case. The coefficients occurring in the Minkowski analogues to Frenet-Serret formulae of the moving frame of Φ in a Minkowski space are called “M-curvatures” and “M-torsions”. Here we essentially make use of the semi-inner product and the sine-Minkowski and cosine-Minkowski functions. Furthermore we define a covariant differentiation in a Minkowski 3-space using a new vector called “deformation vector” and locally measuring the deviation of the Minkowski space from a Euclidean space. With this covariant differentiation it is possible to declare an “M-geodesicc parallelity” and to show that the vector field of the generators of a skew ruled surface Φ is an M-geodesic parallel field along its Minkowski striction curve s. Finally we also define the Pirondini set of ruled surfaces to a given surface Φ. The surfaces of such a set have the M-striction curve and the strip of M-central planes in common

Page generated in 0.0661 seconds