• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study of analysis and improvement methods on running breakdown for the table rollers of hot rolling strip cooling area.

Li, Hsin-pao 10 September 2006 (has links)
The rollers of run out table in Hot Strip Mill are operated with variable high rotational speed under a severe environment of high temperature and much cooling water around. And the table takes long space about 128 meters of length with over 330 rollers. The rollers of this area often break down, and it takes long to make urgent repair. So it costs about ten million NT dollars per year for mill shut-down. Although some improvements have been made before, the troubles still happens frequently. Then the temporary countermeasures of shortening the maintenance cycle and increasing the grease supply have been applied to prevent the break-down frequency from aggravation . But it wastes the cost and does not meet the environmental policy. This study analyzes many damage phenomena. Then it assumes that the 75% of roller running break-down is bearing damage resulting from bad lubrication condition and abnormal axial load. The cooling water which penetrates into bearing housing will result in grease emulsification and its consistency diluting. This certainly causes the bad lubrication condition and bearing rusting. In the meantime, if the floating function of roller bearing is inactive, the bearings will be operated under abnormal high axial load and without appropriate lubrication. Then the bearing will be damaged rapidly and must be repaired quickly. In order to improve bad lubrication and bearing rusting, this study modifies sealing arrangement and grease feeding circuit for bearing housing with the special functions of water obstruction, drainage and resistance to prevent water penetration. In addition, the overflow of grease will be collected to meet the environmental needs. Meanwhile, to look for better water resistance and mechanical stability for greasing, the study also discusses the relationship between consistency variation and thickening soap base after grease emulsification. During a three-month running of the new design , the water contents are stably under 1.5% which has greatly advanced. And the quantity of grease supply is under 10% of existing one. In order to improve the inactive floating function of roller bearings, this study not only analyzes the derivation of problems but also modifies the dimensional tolerance and adds cylindricity of geometric tolerance for the bore of bearing housing. This will ensure complete loose fit and shape accuracy to prevent the interference fit between the bore and bearing caused by manufacturing inaccuracy or other mistakes
2

Optimization of Steel Microstructure during Lamniar Cooling

Bineshmarvasti, Baher Unknown Date
No description available.
3

Modeling Constitutive Behavior And Hot Rolling Of Steels

Phaniraj, M P 12 1900 (has links)
Constitutive behavior models for steels are typically semi-empirical, however recently neural network is also being used. Existing neural network models are highly complex with a large network structure i.e. the number of neurons and layers. Furthermore, the network structure is different for different grades of steel. In the present study a simple neural network structure, 3:4:1, is developed which models flow behavior better than other models available in literature. Using this neural network structure constitutive behavior of 8 steels: 4 carbon steels, V and V-Ti microalloyed steels, an austenitic stainless steel and a high speed steel could be modeled with reasonable accuracy. The stress-strain behavior for the vanadium microalloyed steel was obtained from hot compression tests carried out at 850-1150 C and 0.1-60 s-1. It is found that a better estimate of the constants in the semi-empirical model developed for this steel could be obtained by simultaneous nonlinear regression. A model that can predict the effect of chemical composition on the constitutive behavior would be industrially useful for e.g., in optimizing rolling schedules for new grades of steel. In the present study, a neural network model, 5:6:1, is developed which predicts the flow behavior for a range of carbon steels. It is found that the effect of manganese is best accounted for by taking Ceq=C+Mn/6 as one of the inputs of the network. Predictions from this model show that the effect of carbon on flow stress is nonlinear. The hot strip mill at Jindal Vijaynagar Steel Ltd., Toranagallu, Karnataka, India, was simulated for calculating the rolling loads, finish rolling temperature (FRT) and microstructure evolution. DEFORM-2d a commercial finite element package was used to simulate deformation and heat transfer in the rolling mill. The simulation was carried out for 18 strips of 2-4 mm thickness with compositions in the range and 0.025-0.139 %C. The rolling loads and FRT could be calculated within 15 % and 15 C respectively. Analysis based on the variation in the roll diameter, roll gap and the effect of roll flattening and temperature of the roll showed that an error of 6 % is inherent in the prediction of loads. Simulation results indicated that strain induced transformation to ferrite occurred in the finishing mill. The microstructure after rolling was validated against experimental data for ferrite microstructure and mechanical properties. The mechanical properties of steels with predominantly ferrite microstructures depend on the prior austenite grain size, strain retained before transformation and cooling rate on the run-out table. A parametric study based on experimental data available in literature showed that a variation in cooling rate by a factor of two on the run-out table gives rise to only a 20 MPa variation in the mechanical properties.

Page generated in 0.0488 seconds