• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effect of neutron excess and nuclear deformation on dipole strength functions below the neutron separation energy - nuclear resonance fluorescence experiments on 124,128,132,134 Xe at ELBE and HI gamma S

Massarczyk, Ralph 28 October 2014 (has links) (PDF)
Within this thesis, nuclear resonance fluorescence experiments were analyzed which have been performed at the gamma ELBE facility of the Helmholtz-Zentrum Dresden-Rossendorf and the HI gamma S facility of the Triangle Universities Nuclear Laboratory. The dipole strength up to the neutron separation energy, its distribution as well as its split into electric and magnetic strength were determined. The influence of crucial nuclear parameters, like deformation and neutron excess, on the data was investigated. For the first time a whole set of enriched gaseous targets was measured in the energy region close to the neutron separation threshold. At ELBE the scattering of photons on four different isotopes 124, 128, 132, 134 Xe was investigated by irradiating containers with enriched target material with a broad bremsstrahlung distribution. The endpoint energies were chosen to be 12MeV. This ensures excitations up to the neutron separation threshold. The two isotopes 128, 134 Xe were measured in an additional campaign at HI gamma S facility. The region below the threshold was explored in detail in these experiments. A second, more model-independent determination of the cross section was possible. The work shows, how the measured spectra taken with high-purity germanium detectors, have to be corrected for several, partly overlapping effects in order to determine the complete excitation strength. The calculation of different backgrounds, detector response functions and the influence of inelastic scattering constitute the main part of the presented work. With the help of GEANT4 simulations the amount of not-nuclear scattered photons was estimated. GEANT4 was also used to test the influence of the extended targets on the detection efficiency and response. The code gamma DEX, which calculates deexcitation schemes based on statistical assumptions, was updated and finally used for the unfolding of the spectrum. The measured data is compared to different strength function models and a theoretical prediction based on a QRPA calculation. The summed strength is also set into comparison to other experimental data sets and a global trend for low-lying strength was found. This shows, that the nuclear deformation which has a large influence on the dipole strength above the threshold is only of minor impact for the strength at lower energies. Instead of this, the neutron excess seems to be the dominating factor for the strength in the investigated energy region. This work was supported by the German Research Foundation (DFG), Project No. SCHW883/1-1.
2

Nuclear magnetic resonance and specific heat studies of half-metallic ferromagnetic Heusler compounds

Rodan, Steven 01 March 2016 (has links) (PDF)
Half-metallic ferromagnets (HMFs), with fully spin-polarized conduction electrons, are prime candidates for optimizing spintronic devices. Many Heusler compounds (a class of ternary and quaternary intermetallics) are predicted to be HMFs, in particular Co$_{2}YZ$ (where $Y$ is usually another transition metal, and $Z$ is an s-p element). Crystal structure is controlled by thermodynamics to a large extent. Ideally, one should be able to control and optimize properties which are of interest by appropriately "tuning" the structure (e.g. annealing), but first one must understand the structure and its relation to observed physical properties. A local structural probe technique such as nuclear magnetic resonance (NMR) is an essential tool for identifying and quantifying the various atomic-scale orderings. Different Heusler structure types and antisite disorders affect the material's physical properties. In this thesis, order-disorder phenomena in both bulk and thin film samples of Co$_2$Mn$_{1-x}$Si$_x$ and Co$_2$Mn$_{1-x}$Fe$_x$Si have been systematically studied using NMR. Though it is the films which are directly implemented in actual devices, studying bulk samples as model systems provides invaluable information regarding the material properties. The evolution of local atomic structure in numerous thin films has been shown to depend greatly on preparation parameters, including post-deposition annealing temperature, and specific stoichiometry. For Co$_2$MnSi films, the ideal post-annealing temperature for promoting the $L2_1$ atomic structure was found; the threshold temperature above which structure continues to become higher-ordered in the bulk, but where too much interdiffusion at the buffer interface occurs, degrading the smooth interfaces necessary for high magnetoresistance ratios. NMR also adds evidence that Co$_2$Mn$_x$Si$_{0.88}$ ($x>$1) electrodes in magnetic tunnel junctions have highest tunneling magneto-resistance because the excess Mn suppresses the formation of detrimental Co$_{Mn}$ antisites. A systematic investigation of several thermal and magnetic properties, including Sommerfeld coefficients, Debye temperatures, saturation magnetic moments, spin-wave stiffness, and magnon specific heat coefficient, were measured for selected Co$_2$-based ternary and quaternary Heusler compounds. Obtained values were compared with theoretical ones calculated using electronic band structure methods. It has been systematically shown that adding a magnon term to the specific heat has a negligible effect on the electronic contribution in all cases.
3

The Effect of In-Chain Impurities on 1D Antiferromagnets

Utz, Yannic 07 February 2017 (has links) (PDF)
The thesis is devoted to the study of in-chain impurities in spin 1/2 antiferromagnetic Heisenberg chains (S=1/2 aHC's)---a model which accompanies the research on magnetism since the early days of quantum theory and which is one of the few integrable spin systems. With respect to impurities it is special insofar as an impurity perturbs the system strongly due to its topology: there is no way around the defect. To what extend the one-dimensional picture stays a good basis for the description of real materials even if the chains are disturbed by in-chain impurities is an interesting question which is addressed in this work. For this purpose, Cu Nuclear Magnetic Resonance (NMR) measurements on the cuprate spin chain compounds SrCuO2 and Sr2CuO3 intentionally doped with nickel (Ni), zinc (Zn) and palladium (Pd) are presented. These materials are well known to be among the best realizations of the S=1/2 aHC model and their large exchange coupling constants allow the investigation of the low-energy dynamics within experimentally easily feasible temperatures. NMR provides the unique ability to study the static and dynamic magnetic properties of the spin chains locally which is important since randomly placed impurities break the translational invariance. Because copper is the magnetically active ion in those materials and the copper nuclear spin is most directly coupled to its electron spin, the NMR measurements have been performed on the copper site. The measurements show in all cases that there are changes in the results of these measurements as compared to the pure compounds which indicate the opening of gaps in the excitation spectra of the spin chains and the emergence of oscillations of the local susceptibility close to the impurities. These experimental observations are compared to theoretical predictions to clarify if and to what extend the already proposed model for these doped systems---the finite spin chain---is suitable to predict the behavior of real materials. Thereby, each impurity shows peculiarities. While Zn and Pd are know to be spin 0 impurities, it is not clear if Ni carries spin 1. To shed some light on this issue is another scope of this work. For Zn impurities, there are indications that they avoid to occupy copper sites, other than in the layered cuprate compounds. Also this matter is considered.

Page generated in 0.018 seconds