Spelling suggestions: "subject:"wärmekapazität"" "subject:"wärmekapazitäts""
1 |
Thermodynamische und kinetische Untersuchungen im System Lithium-SiliciumThomas, Daniel 10 February 2015 (has links) (PDF)
Die vorliegende Dissertation stellt die experimentelle Bestimmung von grundlegenden thermodynamischen und kinetischen Stoffdaten im System Lithium-Silicium vor. Ausgehend von der Synthese qualitativ hochwertiger Lithiumsilicide wurden Wärmekapazitäten über einen großen Temperaturbereich (2-873 K) bestimmt, die aufgrund der Ergebnisse bei tiefen Temperaturen die Ermittlung weiterer Parameter wie beispielsweise der Standardentropien bzw. der Bildungsentropien der Lithiumsilicide ermöglichte. Die Eigenschaft der Silicide, mit Wasserstoff Verbindungen einzugehen, führte zudem zur Ausdehnung der Untersuchungen auf das System Li-Si-H. Aus der Erweiterung resultierte neben der formalkinetischen Beschreibung ablaufender Gleichgewichtsreaktionen die Bestimmung von Bildungsenthalpien der Silicide. Auf Grundlage der experimentell bestimmten Stoffgrößen (Cp, S°, ∆BH°), die für theoretische und praxisrelevante Berechnungen sehr verlässliche Stoffdaten darstellen, wurden thermodynamische Modellierungen im stofflichen System durchgeführt.
|
2 |
Thermodynamische Untersuchungen in den Systemen Lithium-Silicium und Lithium-ZinnTaubert, Franziska 12 October 2017 (has links) (PDF)
Lithium-Ionen-Batterien besitzen ein ausgezeichnetes Potential für die Energiespeicherung. Das derzeit dominierende Anodenmaterial in Lithium-Ionen-Batterien mit einer Energiespeicherkapazität von 339 mAh/g ist Graphit. Als Alternative hierfür bieten sich Lithiumsilicide und Lithiumstannide an. Diese Materialien zeichnen sich durch eine viel größere Speicherkapazität und geringere Selbstentladungspotentiale aus. Für die kommerzielle Anwendung dieser beiden Systeme in Lithium-Ionen-Batterien werden grundlegende und verlässliche thermodynamische Daten benötigt.
Derzeit ist die Existenz von sieben Lithiumsiliciden sicher nachgewiesen. Dazu zählen die sechs stabilen Phasen Li17Si4, Li16.42Si4, Li13Si4, Li7Si3, Li12Si7, die Hochdruckphase LiSi und die metastabile Phase Li15Si4. Für die ersten fünf genannten Phasen wurden in der ersten Förderperiode des Schwerpunktprogrammes 1473 Wärmekapazitäten und Standardentropien bestimmt. Bei den Lithiumstanniden sind derzeit sieben Phasen gesichert belegt. Allerdings existiert für keine Phase der Lithiumstannide ein verlässlicher thermodynamischer Basisdatensatz. Aus diesem Grund wurden für die beiden zuletzt genannten Lithiumsilicide (Li15Si4 und LiSi), sowie für die Lithiumstannide Li17Sn4, Li7Sn2, Li13Sn5 und Li7Sn3 die fehlenden thermodynamischen Daten experimentell bestimmt.
Die hergestellten Phasen wurden zunächst mittels Röntgenbeugung, thermischer und chemischer Analyse charakterisiert. Ein Schwerpunkt dieser Arbeit lag auf der experimentellen Bestimmung der Wärmekapazitäten in einem Temperaturbereich von 2 K bis zur jeweiligen Zersetzungstemperatur der untersuchten Verbindungen. Hierfür wurden zwei unterschiedliche Kalorimeter verwendet: ein Physical Property Measurement System (Quantum Design) von 2 K bis 300 K und eine DSC 111 (Setaram), beginnend ab 300 K. Die experimentellen Daten konnten mit Messunsicherheiten von 1 % bis 2 % über 20 K und bis zu 20 % unterhalb von 20 K angegeben werden. Die Messungen bei niedrigen Temperaturen erlauben zudem die Berechnung der Standardentropien, sowie die Bestimmung von elektronischen Beiträgen und Gitterschwingungsbeiträgen zur Wärmekapazität. Weiterhin ist Fokus dieser Arbeit die Bestimmung der Standardbildungsenthalpien der Lithiumsilicide und Lithiumstannide auf Basis von Wasserstoffsorptionsmessungen mittels einer Sieverts-Apparatur. Hierfür wurden erstmals Messungen an den Lithiumsiliciden ausgehend von Li17Si4, LiH:Si (Li:Si = 17:4), Li16.42Si4 und LiSi durchgeführt. Für die Lithiumstannide dienten als Ausgangsmaterial Li17Sn4, LiH:Sn (Li:Sn =17:4), sowie Li7Sn2 und LiH:Sn (Li:Sn = 7:2). Die Anwendung des van´t-Hoff-Plots resultierte in Messunsicherheiten von mindestens 10 %. Aus diesem Grund wurde eine alternative Auswertemethode gewählt, bei der die ermittelten Wärmekapazitäten und Standardentropien mit den Gleichgewichtsdrücken aus den Wasserstoffsorptionsmessungen miteinander verknüpft werden. Auf diese Weise konnten Standardbildungsenthalpien für die untersuchten Phasen mit Fehlern kleiner 1 % ermittelt werden. Aus den Ergebnissen dieser Arbeit resultierte ein vollständiger, gesicherter thermodynamischer Datensatz für das System Li-Si. Das berechnete Li-Si-Phasendiagramm ist im sehr guten Einklang mit experimentellen literaturbekannten Daten. Für die Lithiumstannide erfolgte eine Validierung der ermittelten thermodynamischen Werte.
Die in dieser Arbeit erzielten Ergebnisse liefern einen wesentlichen Beitrag zur Verbesserung der Datenbasis für thermodynamische Berechnungen und für das Verständnis von Phasensequenzen und Gleichgewichten beim Einsatz von Lithiumsiliciden bzw. Lithiumstanniden als Anodenmaterialien in Lithium-Ionen-Batterien.
|
3 |
Thermodynamische und kinetische Untersuchungen im System Lithium-SiliciumThomas, Daniel 16 January 2015 (has links)
Die vorliegende Dissertation stellt die experimentelle Bestimmung von grundlegenden thermodynamischen und kinetischen Stoffdaten im System Lithium-Silicium vor. Ausgehend von der Synthese qualitativ hochwertiger Lithiumsilicide wurden Wärmekapazitäten über einen großen Temperaturbereich (2-873 K) bestimmt, die aufgrund der Ergebnisse bei tiefen Temperaturen die Ermittlung weiterer Parameter wie beispielsweise der Standardentropien bzw. der Bildungsentropien der Lithiumsilicide ermöglichte. Die Eigenschaft der Silicide, mit Wasserstoff Verbindungen einzugehen, führte zudem zur Ausdehnung der Untersuchungen auf das System Li-Si-H. Aus der Erweiterung resultierte neben der formalkinetischen Beschreibung ablaufender Gleichgewichtsreaktionen die Bestimmung von Bildungsenthalpien der Silicide. Auf Grundlage der experimentell bestimmten Stoffgrößen (Cp, S°, ∆BH°), die für theoretische und praxisrelevante Berechnungen sehr verlässliche Stoffdaten darstellen, wurden thermodynamische Modellierungen im stofflichen System durchgeführt.
|
4 |
Thermische Untersuchungen an Argyroditen mit einem Eigenbaudropkalorimeter und Diffusionsversuche / Thermal research at Argyrodites with an self-made dropkalorimeter and investigations of diffusions samplesBesser, Jens 03 December 2001 (has links)
Diese Arbeit beschäftigt sich mit der Thermischen Untersuchung von Argyroditen in einem Eigenbaudropkalorimeter und Diffusionsversuchen. Beschrieben wird der Aufbau, die Arbeitsweise und Kalibrierung des Dropkalorimeters. Es wurden folgende Systeme im Temperaturbereich 298,15K bis max. 1200K vermessen: Ag7PS6, Ag7PSe6, Ag7AsS6, Ag7AsSe6, Ag8GeS6, Ag8GeSe6 und Ag8GeTe6. Hierbei wurde die Enthalpie, die Umwandlungsenthalpie (wenn eine Phasenumwandlung vorhanden war) und falls möglich die Schmelzenthalpie ermittelt. Aus den daraus resultierenden Enthalpiekurven wurde die erste Ableitung gebildet und daraus die Wärmekapazität ermittelt. Im zweiten Teil wurden das Eindiffundieren von flüssigem Selen in einkristalline Argyroditen der Form Cu6PS5Cl, Cu6PS5Br und Cu6PS5I untersucht. Die Einkristalle wurden mit Hilfe des chemischen Transportes dargestellt. Nach mehrwöchigen Tempern der Einkristalle in flüssigem Selen wurden die Kristalle mit dem umhüllenden Selen angeschliffen und mit Hilfe einer Elektronenstrahlmikrosonde vermessen.
|
5 |
Thermodynamische Untersuchungen in den Systemen Lithium-Silicium und Lithium-ZinnTaubert, Franziska 25 September 2017 (has links)
Lithium-Ionen-Batterien besitzen ein ausgezeichnetes Potential für die Energiespeicherung. Das derzeit dominierende Anodenmaterial in Lithium-Ionen-Batterien mit einer Energiespeicherkapazität von 339 mAh/g ist Graphit. Als Alternative hierfür bieten sich Lithiumsilicide und Lithiumstannide an. Diese Materialien zeichnen sich durch eine viel größere Speicherkapazität und geringere Selbstentladungspotentiale aus. Für die kommerzielle Anwendung dieser beiden Systeme in Lithium-Ionen-Batterien werden grundlegende und verlässliche thermodynamische Daten benötigt.
Derzeit ist die Existenz von sieben Lithiumsiliciden sicher nachgewiesen. Dazu zählen die sechs stabilen Phasen Li17Si4, Li16.42Si4, Li13Si4, Li7Si3, Li12Si7, die Hochdruckphase LiSi und die metastabile Phase Li15Si4. Für die ersten fünf genannten Phasen wurden in der ersten Förderperiode des Schwerpunktprogrammes 1473 Wärmekapazitäten und Standardentropien bestimmt. Bei den Lithiumstanniden sind derzeit sieben Phasen gesichert belegt. Allerdings existiert für keine Phase der Lithiumstannide ein verlässlicher thermodynamischer Basisdatensatz. Aus diesem Grund wurden für die beiden zuletzt genannten Lithiumsilicide (Li15Si4 und LiSi), sowie für die Lithiumstannide Li17Sn4, Li7Sn2, Li13Sn5 und Li7Sn3 die fehlenden thermodynamischen Daten experimentell bestimmt.
Die hergestellten Phasen wurden zunächst mittels Röntgenbeugung, thermischer und chemischer Analyse charakterisiert. Ein Schwerpunkt dieser Arbeit lag auf der experimentellen Bestimmung der Wärmekapazitäten in einem Temperaturbereich von 2 K bis zur jeweiligen Zersetzungstemperatur der untersuchten Verbindungen. Hierfür wurden zwei unterschiedliche Kalorimeter verwendet: ein Physical Property Measurement System (Quantum Design) von 2 K bis 300 K und eine DSC 111 (Setaram), beginnend ab 300 K. Die experimentellen Daten konnten mit Messunsicherheiten von 1 % bis 2 % über 20 K und bis zu 20 % unterhalb von 20 K angegeben werden. Die Messungen bei niedrigen Temperaturen erlauben zudem die Berechnung der Standardentropien, sowie die Bestimmung von elektronischen Beiträgen und Gitterschwingungsbeiträgen zur Wärmekapazität. Weiterhin ist Fokus dieser Arbeit die Bestimmung der Standardbildungsenthalpien der Lithiumsilicide und Lithiumstannide auf Basis von Wasserstoffsorptionsmessungen mittels einer Sieverts-Apparatur. Hierfür wurden erstmals Messungen an den Lithiumsiliciden ausgehend von Li17Si4, LiH:Si (Li:Si = 17:4), Li16.42Si4 und LiSi durchgeführt. Für die Lithiumstannide dienten als Ausgangsmaterial Li17Sn4, LiH:Sn (Li:Sn =17:4), sowie Li7Sn2 und LiH:Sn (Li:Sn = 7:2). Die Anwendung des van´t-Hoff-Plots resultierte in Messunsicherheiten von mindestens 10 %. Aus diesem Grund wurde eine alternative Auswertemethode gewählt, bei der die ermittelten Wärmekapazitäten und Standardentropien mit den Gleichgewichtsdrücken aus den Wasserstoffsorptionsmessungen miteinander verknüpft werden. Auf diese Weise konnten Standardbildungsenthalpien für die untersuchten Phasen mit Fehlern kleiner 1 % ermittelt werden. Aus den Ergebnissen dieser Arbeit resultierte ein vollständiger, gesicherter thermodynamischer Datensatz für das System Li-Si. Das berechnete Li-Si-Phasendiagramm ist im sehr guten Einklang mit experimentellen literaturbekannten Daten. Für die Lithiumstannide erfolgte eine Validierung der ermittelten thermodynamischen Werte.
Die in dieser Arbeit erzielten Ergebnisse liefern einen wesentlichen Beitrag zur Verbesserung der Datenbasis für thermodynamische Berechnungen und für das Verständnis von Phasensequenzen und Gleichgewichten beim Einsatz von Lithiumsiliciden bzw. Lithiumstanniden als Anodenmaterialien in Lithium-Ionen-Batterien.
|
6 |
Thermodynamische Untersuchungen an orthorhombischem Lithiumeisen(II)-phosphat und Eisen(III)-phosphatThomas, Christian 01 February 2019 (has links)
Lithiumeisen(II)-phosphat ist ein vielversprechendes und umweltfreundliches Kathodenmaterial für den Einsatz in Lithium-Ionen-Batterien (LIB), das eingehend im Hinblick auf seine thermodynamischen- und Oberflächeneigenschaften untersucht wurde. Zur Bestimmung der mittleren molaren Mischungsenthalpie von LiFePO4 und FePO4 wurde die Methode der isothermen Titrationskalorimetrie für die Untersuchung heterogener Stoffsysteme optimiert. Die Ergebnisse konnten mit elektrochemischen Gleichgewichtszellspannungsmessungen validiert werden. Ferner wurde die Oberflächenspannung von reinem LiFePO4 experimentell mit Hilfe der Kapillar-Aufstiegsmethode an Pulvern ermittelt. Ein weiterer Forschungsschwerpunkt stellte experimentelle Bestimmung der Wärmekapazität von phasenreinem orthorhombischen FePO4 dar. Des Weiteren wurde der Ablauf der hydrothermalen LiFePO4-Synthese ausgehend von Li3PO4 und Vivianit anhand von in-situ Messungen der elektrolytischen Leitfähigkeit und thermodynamischen Modellierungen aufgeklärt.
|
7 |
Synthese und thermodynamische Charakterisierung ausgewählter AlanateHabermann, Franziska 10 June 2024 (has links)
Im Mittelpunkt der Arbeit stehen Alanate und Aluminiumhydride der Übergangs- und Erdalkalimetalle in Bezug auf ihre Synthese, ihre thermodynamischen Eigenschaften, ihre Zersetzungsreaktionen und ihre potentielle Eignung für reversible Wasserstoffspeicheranwendungen. Es konnten für CeAlH6, Mg(AlH4)2, Ca(AlH4)2, Sr(AlH4)2, CaAlH5 und SrAlH5 die Wärmekapazitätsfunktionen sowie die absoluten Entropien und Bildungsenthalpien bei 298,15 K bestimmt werden. Weiterhin wurden Methoden zur Näherung der genannten thermodynamischen Daten evaluiert und mit den ermittelten Werten aktualisiert und erweitert. Außerdem wurde die im Bereich der komplexen Hydride übliche Annahme, dass sich die bei der Synthese gebildeten Nebenprodukte LiCl und NaCl gegenüber den Hydriden inert verhalten, überprüft. Es konnte gezeigt werden, dass die Annahme hinsichtlich der Eigenschaften und Zersetzungsreaktionen von Mg(AlH4)2, Ca(AlH4)2 und Sr(AlH4)2 Bestand hat. In Bezug auf die Dehydrierung von CaAlH5 und SrAlH5 ist sie jedoch ungültig, wenn die Probe LiCl enthält.
|
8 |
Nuclear magnetic resonance and specific heat studies of half-metallic ferromagnetic Heusler compoundsRodan, Steven 01 March 2016 (has links) (PDF)
Half-metallic ferromagnets (HMFs), with fully spin-polarized conduction electrons, are prime candidates for optimizing spintronic devices. Many Heusler compounds (a class of ternary and quaternary intermetallics) are predicted to be HMFs, in particular Co$_{2}YZ$ (where $Y$ is usually another transition metal, and $Z$ is an s-p element). Crystal structure is controlled by thermodynamics to a large extent. Ideally, one should be able to control and optimize properties which are of interest by appropriately "tuning" the structure (e.g. annealing), but first one must understand the structure and its relation to observed physical properties. A local structural probe technique such as nuclear magnetic resonance (NMR) is an essential tool for identifying and quantifying the various atomic-scale orderings. Different Heusler structure types and antisite disorders affect the material's physical properties.
In this thesis, order-disorder phenomena in both bulk and thin film samples of Co$_2$Mn$_{1-x}$Si$_x$ and Co$_2$Mn$_{1-x}$Fe$_x$Si have been systematically studied using NMR. Though it is the films which are directly implemented in actual devices, studying bulk samples as model systems provides invaluable information regarding the material properties.
The evolution of local atomic structure in numerous thin films has been shown to depend greatly on preparation parameters, including post-deposition annealing temperature, and specific stoichiometry. For Co$_2$MnSi films, the ideal post-annealing temperature for promoting the $L2_1$ atomic structure was found; the threshold temperature above which structure continues to become higher-ordered in the bulk, but where too much interdiffusion at the buffer interface occurs, degrading the smooth interfaces necessary for high magnetoresistance ratios. NMR also adds evidence that Co$_2$Mn$_x$Si$_{0.88}$ ($x>$1) electrodes in magnetic tunnel junctions have highest tunneling magneto-resistance because the excess Mn suppresses the formation of detrimental Co$_{Mn}$ antisites.
A systematic investigation of several thermal and magnetic properties, including Sommerfeld coefficients, Debye temperatures, saturation magnetic moments, spin-wave stiffness, and magnon specific heat coefficient, were measured for selected Co$_2$-based ternary and quaternary Heusler compounds. Obtained values were compared with theoretical ones calculated using electronic band structure methods. It has been systematically shown that adding a magnon term to the specific heat has a negligible effect on the electronic contribution in all cases.
|
9 |
Magnetische und Elektrische Eigenschaften von Nd0.66(Sr1-yLiy)0.34MnO3 Manganiten / Magnetic and Electrical Properties of Nd0.66(Sr1-yLiy)0.34MnO3 manganitesHamad, Nagat El-Sabaey Farag 17 December 2003 (has links)
No description available.
|
10 |
Nuclear magnetic resonance and specific heat studies of half-metallic ferromagnetic Heusler compoundsRodan, Steven 26 January 2016 (has links)
Half-metallic ferromagnets (HMFs), with fully spin-polarized conduction electrons, are prime candidates for optimizing spintronic devices. Many Heusler compounds (a class of ternary and quaternary intermetallics) are predicted to be HMFs, in particular Co$_{2}YZ$ (where $Y$ is usually another transition metal, and $Z$ is an s-p element). Crystal structure is controlled by thermodynamics to a large extent. Ideally, one should be able to control and optimize properties which are of interest by appropriately "tuning" the structure (e.g. annealing), but first one must understand the structure and its relation to observed physical properties. A local structural probe technique such as nuclear magnetic resonance (NMR) is an essential tool for identifying and quantifying the various atomic-scale orderings. Different Heusler structure types and antisite disorders affect the material's physical properties.
In this thesis, order-disorder phenomena in both bulk and thin film samples of Co$_2$Mn$_{1-x}$Si$_x$ and Co$_2$Mn$_{1-x}$Fe$_x$Si have been systematically studied using NMR. Though it is the films which are directly implemented in actual devices, studying bulk samples as model systems provides invaluable information regarding the material properties.
The evolution of local atomic structure in numerous thin films has been shown to depend greatly on preparation parameters, including post-deposition annealing temperature, and specific stoichiometry. For Co$_2$MnSi films, the ideal post-annealing temperature for promoting the $L2_1$ atomic structure was found; the threshold temperature above which structure continues to become higher-ordered in the bulk, but where too much interdiffusion at the buffer interface occurs, degrading the smooth interfaces necessary for high magnetoresistance ratios. NMR also adds evidence that Co$_2$Mn$_x$Si$_{0.88}$ ($x>$1) electrodes in magnetic tunnel junctions have highest tunneling magneto-resistance because the excess Mn suppresses the formation of detrimental Co$_{Mn}$ antisites.
A systematic investigation of several thermal and magnetic properties, including Sommerfeld coefficients, Debye temperatures, saturation magnetic moments, spin-wave stiffness, and magnon specific heat coefficient, were measured for selected Co$_2$-based ternary and quaternary Heusler compounds. Obtained values were compared with theoretical ones calculated using electronic band structure methods. It has been systematically shown that adding a magnon term to the specific heat has a negligible effect on the electronic contribution in all cases.
|
Page generated in 0.0403 seconds