• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Temperature quenching in LAB based liquid scintillator and muon-induced backgrounds in the SNO+ experiment

Sörensen, Arnd 24 October 2016 (has links) (PDF)
The starting SNO+ experiment, successor to the Sudbury Neutrino Observatory, is a neutrino detector using LAB based liquid scintillator as active medium. Situated in the SNOLab deep underground laboratory in Sudbury, Canada, the rock overburden amounts to about 6 km.w.e., providing an effective shielding against cosmic rays. The residual muon rate is 63 μ/day going through the detector volume. About 780 t of an LAB mixture inside an acrylic sphere with a 6 m radius will be observed by ≈ 9300 photomultipliers, surrounded by a ≈ 7000 t water shielding. SNO+ will be searching for low energy solar-, geo-, reactor- and supernova neutrinos, but the main goal is the observation of the neutrinoless double beta decay in Te-130. Under operating conditions, the scintillator will be cooled to about 12° C. This work investigated the effect of temperature changes on the light output of LAB based liquid scintillator in a range from -5° C to 30° C with α-particles and electrons in a small scale setup. Assuming a linear behaviour, a combined negative temperature coefficient of (−0.29 ± 0.01) %/° C is found. Considering hints for a particle type dependency, electrons show (−0.17 ± 0.02) %/° C whereas the temperature dependency seems stronger for α-particles (−0.35 ± 0.03) %/° C. A pulse shape analysis shows increased strength of a slow decay component at lower temperatures, pointing to reduced non-radiative triplet state de-excitations at lower temperatures. Furthermore, this work found upper bounds for the in-situ muon-induced isotope production via scaling calculations and simulations with Geant4 based software. For the most concerning isotope C-11, an upper limit of about 1.3 × 10^3 decays/kt/yr is found and a reduction technique, developed by the Borexino collaboration, can be effectively applied for SNO+. Also a muon reconstruction algorithm is implemented, performing reasonably well, but not good enough to improve the background reduction scheme. / Das zukünftige SNO+ experiment, Nachfolger des Sudbury Neutrino Observatory, ist ein Neutrino-Detektor mit LAB basierten Flüssigszintillator als aktivem Medium. Im SNOLab Untertagelabor (Sudbury, Kanada) gelegen, ist es durch die Felsüberdeckung von 6 km.w.e. hervorragend gegen kosmische Strahlung abgeschirmt. Die Rate der übrigen Myonen die das Detektorvolumen durchdringen beträgt ca. 63 μ/Tag. In einer Acrylkugel, mit einem Radius von 6 m, wird eine LAB Mischung von ≈ 9300 Photomultipliern beobachtet und von einer Wasserabschirmung von ≈ 7 kt umgeben. SNO+ wird nach niederenergetischen solaren-, Geo-, Reaktor- und Supernova Neutrinos suchen, aber das Hauptziel ist die Beobachtung von neutrinolosen doppelten Betazerfällen in Te-130. Unter den Betriebsbedingungen wird der Flüssigszintillator eine Temperatur von ca. 12° C annehmen. Diese Arbeit hat den Einfluss von Temperaturveränderungen in einem Bereich von -5° C to 30° C auf die erzeugte Lichtmenge untersucht. Dazu wurden α-Teilchen und Elektronen in einem kleineren Versuchaufbau beobachtet. Unter der Annahme eines linearen Verhaltens, wurde ein globaler negativer Temperaturkoeffizient von (−0.29 ± 0.01) %/° C gefunden. Unter Berücksichtigung von Hinweisen auf eine Teilchenartabhängigkeit, findet sich für Elektronen ein Koeffizient von (−0.17 ± 0.02) %/° C, wohingegen α-Teilchen eine stärkere Abhängikeit von (−0.35 ± 0.03) %/° C aufweisen. Eine Pulsformanalyse zeigt eine bei tieferen Temperaturen stärker ausgeprägte langsame Zerfallskomponente, was darauf hinweist dass die nicht-radiativen Abregungen der Triplet-Zustände bei niedrigeren Temperaturen reduziert sind. Weiterhin wurden in dieser Arbeit obere Ausschlußgrenzen für in-situ Myon-induzierte Isotopenproduktion gefunden, wozu Skalierungsrechnungen und Simulation mit auf Geant4 basierender Software benutzt wurden. Für das wichtigste Isotop C-11 wurde eine obere Grenze von 1.3 × 10^3 Ereignisse/kt/Jahr gefunden und eine Technik zur Reduzierung des Untergrundes, entwickelt von der Borexino Kollaboration, kann effektiv für SNO+ angewendet werden. Darüber hinaus wurde eine Myon Spurrekonstruktion implementiert, die sinnvolle Ergebnisse liefert, aber nicht gut genug ist um die Untergrund Reduzierung zu unterstützen.
2

Search for 2nbb Excited State Transitions and HPGe Characterization for Surface Events in GERDA Phase II

Lehnert, Björn 30 March 2016 (has links) (PDF)
The search for the neutrinoless double beta (0nbb) decay is one of the most active fields in modern particle physics. This process is not allowed within the Standard Model and its observation would imply lepton number violation and would lead to the Majorana nature of neutrinos. The experimentally observed quantity is the half-life of the decay, which can be connected to the effective Majorana neutrino mass via nuclear matrix elements. The latter can only be determined theoretically and are currently affected by large uncertainties. To reduce these uncertainties one can investigate the well established two-neutrino double beta (2nbb) decay into the ground and excited states of the daughter isotope. These similar processes are allowed within the Standard Model. In this dissertation, the search for 2nbb decays into excited states is performed in Pd-110, Pd-102 and Ge-76. Three gamma spectroscopy setups at the Felsenkeller (Germany), HADES (Belgium) and LNGS (Italy) underground laboratories are used to search for the transitions in Pd-110 and Pd-102. No signal is observed leading to lower half-live bounds (90% C.I.) of 2.9e20 yr, 3.9e20 yr and 2.9e20 yr for the 0/2nbb 2p1, 0p1 and 2p2 transitions in Pd-110 and 7.9e18 yr, 9.2e18 yr and 1.5e19 yr for the 0/2nbb 2p1, 0p1 and 2p2 transitions in Pd-102, respectively. This is a factor of 1.3 to 3 improvement compared to previous limits. The data of Phase I (Nov 2011 - May 2013) of the 0nbb decay experiment GERDA at LNGS is used to search for excited state transitions in Ge-76. The analysis is based on coincidences between two detectors and finds no signal. Lower half-life limits (90 % C.L.) of 1.6e23 yr, 3.7e23 yr and 2.3e23 yr are obtained for the 2nbb 2p1, 0p1 and 2p2 transitions, respectively. These limits are more than two orders of magnitude larger than previous ones and could exclude many old matrix element calculations. In addition to the excited state searches, important measurements and improvements for GERDA Phase II upgrades are performed within this dissertation. 30 new BEGe detectors are characterized for their surface and active volume properties which is an essential ingredient for all future physics analyses in GERDA. These precision measurements reduce the systematic uncertainty of the active volume to a subdominant level. In extension to this, a new model for simulating pulse shapes of n+ electrode surface events is developed. With this model it is demonstrated that the dominant background of K-42 on the detector surfaces can be suppressed by a factor of 145 with an A/E pulse shape cut in Phase II. A further suppression of background is obtained by a liquid argon scintillation light veto. With newly developed Monte Carlo simulations, including the optical scintillation photons, it is demonstrated that Tl-208 in the detectors holders can be suppressed by a factor of 134. K-42 homogeneously distributed in the LAr can be suppressed with this veto in combination with pulse shape cuts by a factor of 170 for BEGe detectors. The characterization measurements and the developed simulation tools presented within this dissertation will help to enhance the sensitivity for all 0/2nbb decay modes and will allow to construct an improved background model in GERDA Phase II. / Die Suche nach dem neutrinolosen Doppelbetazerfall (0nbb) ist eines der aktivsten Felder der modernen Teilchenphysik. Der Zerfall setzt die Verletzung der Leptonenzahl voraus und hätte die Majorananatur des Neutrinos zur Folge. Die durch eine Beobachtung bestimmbare Halbwertszeit des Zerfalls ermöglicht, über ein nukleares Matrixelement, Zugang zur effektiven Majorananeutrinomasse. Die größten Unsicherheiten gehen dabei auf das Matrixelement zurück, welches nur durch verschiedene, teilweise stark voneinander abweichende theoretische Modelle zugänglich ist. Eine Möglichkeit diese Unsicherheiten zu reduzieren bieten genaue Studien des im Standardmodel erlaubten neutrinobegleiteten Doppelbetazerfalls (2nbb) in angeregte Zustände des Tochterkerns. In dieser Dissertation wird der 2nbb-Zerfall der Nuklide Pd-110, Pd-102 und Ge-76 in angeregte Zustände untersucht. Die Untersuchungen von Pd-110 und Pd-102 wurden in drei umfangreichen Gammaspektroskopie-Experimenten in den Untergrundlaboren Felsenkeller (Deutschland), HADES (Belgien) und LNGS (Italien) durchgefürt. Es wurde kein Signal beobachtet und damit die weltweit besten unteren Grenzen für die Halbwertszeit dieser Zerfälle festgesetzt: 2,9e20 yr, 3,9e20 yr und 2,9e20 yr für die 0/2nbb 2p1, 0p1 und 2p2 Übergänge in Pd-110 and 7,9e18 yr, 9,2e18 yr und 1,5e19 yr für die 0/2nbb 2p1, 0p1 und 2p2 Übergänge in Pd-102 (90% C.I.). Dies ist eine 1,3 bis 3-fache Verbesserung gegenüber den vorher bekannten Grenzen. Die Untersuchung des 2nbb-Zerfalls in Ge-76 basiert auf Daten aus Phase I (Nov. 2011 - Mai 2013) des 0nbb-Zerfall Experiments GERDA. Mit der auf koinzidenten Ereignissen basierten Analyse konnte kein Signal beobachtet werden und folgende untere Grenzen für die Halbwertszeit der 2nbb 2p1, 0p1 und 2p2 Übergänge wurden festgelegt: 1,6e23 yr, 3,7e23 yr und 2,3e23 (90% C.L.). Diese 100-fache Verbesserung gegenüber den bisher bekannten Grenzen widerlegt eine Vielzahl älterer, zur Verfügung stehender Matrixelemente. Zusätzlich wurden im Rahmen dieser Dissertation für die Erweiterungen des GERDA Experiments zur Phase II wichtige Messungen durchgeführt und Verbesserungen entwickelt. 30 neu produzierte BEGe Detektoren wurden hinsichtlich ihrer Oberflächeneigenschaften sowie ihrer aktiven Volumina charakterisiert. Diese Präzisisionsmessungen sind für alle zukünftigen Analysen in GERDA notwendig und erlauben die entsprechenden systematischen Unsicherheiten auf ein subdominantes Niveau zu reduzieren. Erweiternd wurde ein neues Model zur Beschreibung der n+ Elektrode entwickelt, welches erstmals erlaubt die Pulsform von Oberflächeninteraktionen zu simulieren. Mithilfe dieses Models konnte demonstriert werden, dass der in Oberflächeninteraktionen begründete und in GERDA dominante Messuntergrund von K-42 auf der Detektoroberfläche durch Pulsformanalyse um das 145-fache unterdrückt werden kann. Eine weitere Untergrundreduzierung wird durch ein Flüssigargon Szintillationsveto erreicht. Im Rahmen dieser Arbeit wurden vorhandene Monte Carlo Simulationen um den Transport von optischen Photonen erweitert und die 134-fache Unterdrückung des Tl-208 Untergrundes demonstriert. Die Ergebnisse dieser Arbeit helfen eine deutliche Sensitivitätsverbesserung für die zuküntige Suche nach dem 0/2nbb-Zerfall zu erzielen und erlauben die Erstellung eines präziseren Untergrundmodels in GERDA Phase II.
3

Neutronenphysikalische Studien an Germanium für Experimente zum neutrinolosen Doppelbetazerfall von 76-Ge

Domula, Alexander Robert 29 January 2014 (has links) (PDF)
Ein Ziel der modernen Physik ist die experimentelle Beobachtung des neutrinolosen Doppelbetazerfalls (0nbb). Unter den wenigen in der Natur vorkommenden Nukliden ist 76-Ge ein möglicher Kandidat an denen dieser Prozess unter anderem mit dem Experiment GERDA nachgewiesen werden soll. Die extrem geringe Wahrscheinlichkeit für das Auftreten einer 0nbb-Umwandlung ist mindestens zehn Größenordnungen kleiner ist als die des Beta-Zerfalls von 115-In mit einer Halbwertszeit von 4,41x10^14 Jahren, einem der seltensten in der Natur beobachteten Kernumwandlungen. Die dafür erforderliche hohe Detektions Sensitivität wird unter anderem vom Messuntergrund bestimmt, dessen genaue Kenntnis für die Auswertung der Messdaten erforderlich ist. In dieser Arbeit wurden neutronenphysikalische Studien an Germanium durchgeführt, die essentielle Lücken in diesem Kenntnisstand schließen. Neutronen können durch direkte Wechselwirkung mit Germanium sowie der umgebenden Materie des Detektors oder indirekt durch Aktivierung Zählereignisse hervorrufen. Für das Verständnis des damit verursachten Untergrundes wurde der Neutronenwechselwirkungsquerschnitt 70-Ge(n,3n)68-Ge, das Anregungsschema von 76-Ge und der energieabhängige Anregungsquerschnitt für einige dieser Zustände untersucht. Der mangelhafte Messdatenbestand für natürlich vorkommende Germaniumisotope wird dabei entscheidend verbessert. Um die Untersuchung des 76-Ge Anregungsschemas und den Zugang zu einer Palette weiterer Experimente zu ermöglichen, wurde im Rahmen dieser Arbeit ein leistungsfähiges, sehr speziellen Anforderungen entsprechendes Rohrpostsystem entwickelt und im Neutronenlabor der TU Dresden installiert. Ein weiteres neutronenphysikalisches Experiment untersucht den bisher unbeobachteten Elektroneneinfang von 76-As. Dadurch wird eine Möglichkeit gezeigt die oftmals nur mit theoretischen Modellen zugänglichen und mit großen Unsicherheiten behafteten Übergansmatrixelemente experimentell zu bestimmen. Diese spielen bei der Auswertung von Experimenten zum Doppelbetazerfall, insbesondere des Experimentes GERDA, eine entscheidende Rolle. / One goal of modern physics is the experimental observation of the neutrinoless double beta decay (0nbb). Among the few naturally occurring nuclides 76-Ge is one candidate to which this process is to verify, amongest others with the GERDA experiment. The extremely low probability of occurrence for a 0nbb-decay is of at least ten orders of magnitude smaller than that of the Beta-decay of 115-In, one of the rarest beta transitions observed in nature with a half-life of 4.41x10^14 years. Thefore a high detection sensitivity is required, wich depends among other things on the measuring background. Its exact knowledge is necessary for the evaluation of the measuring data. In this work neutron-physical studies were performed on germanium aiming to close the essential gaps in this state of knowledge. Neutrons can cause counting events by direct interaction with germanium and the surrounding matter of the detector or indirectly by activation of any of these materials. For understanding of those background signals, the neutron interaction cross section 70-Ge(n,3n)68-Ge, the levelsceme and the energy-dependent excitation cross section of 76-Ge has been investigated. The lack of data inventory for natural germanium has been improved significantly. To enable the investigation of the 76-Ge level sceme and the access to a range of other experiments, a powerful, very special requirements corresponding pneumatic tube system was developed and installed in scope of this work at the neutron laboratory of the TU Dresden. Another neutron physics experiment examined the so far unobserved electroncapture of 76-As. This shows one way to determine transition matrix elements experimentally, which is often only accessible through theoretical models and prone to large uncertainties. These Matrix elements play a crucial role in the analysis of experiments on double beta decay, in particular the GERDA experiment.

Page generated in 0.0237 seconds