• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Behandlung des drohenden hämatologischen Rezidivs von Patienten mit MDS und AML nach allogener Stammzelltransplantation mit 5-Azacytidin (Vidaza®)

Seltmann, Franziska 07 August 2013 (has links) (PDF)
Im Rahmen der RELAZA-Studie sollte die Wirksamkeit sowie die Sicherheit von AZA in der Verzögerung bzw. Vermeidung eines hämatologischen Rezidivs bei Patienten mit CD34+ MDS oder AML bei fallendem CD34-Spenderchimärismus nach allogener SZT untersucht werden. Als primäre Zielparameter galten hierbei die Ansprechrate im Sinne eines CD34-Spenderchimärismusanstiegs auf ≥ 80% (majores Ansprechen) etwa einen Monat nach Ende des 4. Zyklus AZA sowie die Dauer dieses Ansprechens. Ferner sollte der weitere Krankheitsverlauf, das Gesamt- und auch rezidivfreie Überleben sowie die Verträglichkeit und die Beeinflussung der GvHD untersucht werden. Dazu wurde der Anteil CD34+ Spenderzellen im peripheren Blut von insgesamt 53 Patienten im Abstand von drei bis vier Wochen und ab dem 9.-24. Monat nach allogener SZT alle sieben bis acht Wochen bestimmt. Die 20 Patienten, die während dieser Screeningphase einen CD34-Spenderzellabfall auf < 80% zeigten, aber gleichzeitig kein hämatologisches Rezidiv und transfusionsunabhängig > 3 Gpt/l Leukozyten sowie > 75 Gpt/l Thrombozyten aufwiesen, wurden in die Therapiegruppe aufgenommen. AZA wurde pro Zyklus unter entsprechender antiemetischer Prophylaxe in einer Dosis von 75 mg/m2/Tag über sieben aufeinanderfolgende Tage subkutan verabreicht. Der Abstand zwischen dem jeweiligen Beginn zweier Zyklen betrug circa 28 Tage. Es wurden zunächst nur vier Zyklen AZA in Folge appliziert. Einen Monat nach Ende des 4. Zyklus erfolgte die Bewertung des Ansprechens durch Zuordnung der einzelnen Patienten zu den Gruppen „majores Ansprechen“ (CD34-Spenderzellchimärismus ≥ 80%), „minores Ansprechen“ (CD34-Spenderzellchimärismus < 80%, aber kein Rezidiv) und „Rezidiv“. Um bei Patienten, die bis dahin nur ein minores Ansprechen erreicht hatten oder deren CD34-Spenderzellchimärismus wieder auf < 80% abgefallen war, ein (erneutes) majores Ansprechen zu induzieren, konnten im Anschluss an Block 1 (Zyklus 1-4) im Rahmen von Block 2 und 3 jeweils weitere vier Zyklen AZA gegeben werden. Vor jedem neuen Zyklus erfolgte die Kontrolle wesentlicher Laborparameter (großes Blutbild, ALAT, ASAT, GGT, Creatinin, Harnstoff, Natrium, Kalium, Bilirubin, CRP) sowie die Bewertung der GvHD. Nach dem 2. und 4. Zyklus jedes Blocks fanden eine erneute Knochenmarkpunktion sowie die Analyse des CD34-Spenderchimärismus statt. Der CD34-Spenderchimärismus der 20 Patienten der Therapiegruppe war im Median 169 Tage nach der letzten SZT auf < 80% abgefallen, sodass die Therapie mit AZA bei diesen Patienten begonnen wurde. Nach nur vier Zyklen AZA konnte bei 16 von 20 (80%) Patienten eine Stabilisierung oder Verminderung der MRD festgestellt werden. Insgesamt zeigten zehn der 20 (50%) Patienten ein majores Ansprechen. Dieses war zum Studienabschluss im Januar 2011 allerdings nur noch bei drei Patienten (medianes follow up von 300 Tagen (Spannweite 181–899 Tage) nach Ende des 1. Blocks) nachweisbar. Sechs (30%) Patienten zeigten nach dem 4. Zyklus ein minores Ansprechen und vier (20%) waren bereits im Rezidiv. Von den 16 Patienten, die entweder ein majores oder minores Ansprechen zeigten, begannen 11 Patienten mit dem zweiten und vier auch noch mit dem dritten Block. Durch diese Wiederbehandlung mit AZA konnte allerdings nur bei einer Patientin ein (erneutes) majores Ansprechen erreicht werden, welches jedoch nur etwa einen Monat anhielt. Zusammenfassend betrachtet haben bis zum Studienabschluss 13 von 20 (65%) Therapiepatienten rezidiviert. Das rezidivfreie Überleben dieser Patienten betrug im Median 231 Tage (Spannweite 56–558 Tage), das Gesamtüberleben lag bei im Median 470 Tagen (Spannweite 182-1440 Tage) nach dem initialen Abfall des CD34-Subsetchimärismus < 80%. Neun von ihnen sind im Median 293 Tage (Spannweite 182 – 1159 Tage) nach CD34-Spenderchimärismusabfall verstorben. Vier der 20 Patienten haben bis zum Abschluss der Studie, das heißt im Median 347 Tage (Spannweite 297 – 998 Tage) nach dem ersten Abfall des CD34-Subsetchimärismus < 80%, rezidivfrei überlebt. Drei von ihnen zeigten zum Studienabschluss ein bis dahin im Median seit 300 Tagen (Spannweite 181 – 899 Tage) nach Therapieende bestehendes stabiles majores Ansprechen. Die restlichen drei der 20 Therapiepatienten sind nicht Rezidiv-assoziiert verstorben. Das Gesamtüberleben aller Therapiepatienten lag bei im Median 347 Tagen (Spannweite 162–1440 Tage) nach Abfall der CD34+ Zellen unter die 80% Grenze. Die Hauptnebenwirkung von AZA bestand in der Induktion schwerer Zytopenien, die bei sechs von 20 Patienten zu Infektionen führten. Diese konnten jedoch entweder ambulant oder stationär gut beherrscht werden, sodass sie weder zum Abbruch der Studie noch zum Tod eines Patienten führten. Ansonsten konnte durch Dosisanpassungen, Zyklusverschiebungen sowie durch die Gabe von Wachstumsfaktoren (G-CSF) eine Regeneration des Blutbilds erreicht werden. Gravierende Verschlechterungen bestehender GvHD wurden nicht beobachtet. Hingegen konnte die immunsuppressive Medikation unter den ersten vier Zyklen AZA bei vier von sechs Patienten beendet werden. Die RELAZA-Studie hat gezeigt, dass AZA unter akzeptablen Nebenwirkungen in der Lage ist, das Auftreten eines hämatologischen Rezidivs bei Abfall des CD34-Spenderzellchimärimus nach allogener SZT zumindest zu verzögern. Allerdings mussten wir feststellen, dass nur die Hälfte der Patienten ein majores Ansprechen zeigte und dieses bei den meisten Patienten nur von kurzer Dauer war. Deshalb gehen wir davon aus, dass sowohl zur Induktion eines majoren Ansprechens als auch zum Erhalt desselben vier Zyklen AZA in Folge nicht ausreichend sind. Der Effekt eines dahingehend veränderten Applikationsschemas wird bereits im Rahmen der RELAZA-II-Studie untersucht.
2

Auswirkungen einer Langzeitexposition mit den Tyrosinkinase-Inhibitoren Imatinib, Dasatinib und Bosutinib auf das Skelett und weitere Organsysteme im neu etablierten Tiermodell der juvenilen Ratte

Tauer, Josephine Tabea 24 July 2013 (has links) (PDF)
Hintergrund und Fragestellung: Seit der Zulassung des Tyrosinkinase-Inhibitors (TKI) Imatinib im Jahre 2001 hat sich die Therapie der chronisch myeloischen Leukämie (CML) grundlegend verändert. Imatinib inhibiert die konstitutiv aktive Tyrosinkinase BCR-ABL, welche die verstärkte Proliferation der leukämischen Zellen und die Entwicklung der CML bedingt. Das sehr gute klinische Ansprechen auf eine Imatinib-Behandlung resultierte in einer beschleunigten Zulassung dieses TKI auch bei pädiatrischen Patienten im Jahre 2003. Aufgrund von Punktmutationen und/oder strukturellen Änderungen innerhalb des BCR-ABL Fusionsproteins können sich Resistenzen gegenüber Imatinib entwickeln. Deshalb wurden Zweit- und Drittgenerations TKI wie Dasatinib und Bosutinib entwickelt. Imatinib wirkt nicht hoch spezifisch und hemmt neben BCR-ABL auch weitere Tyrosinkinasen, wie z.B. c-KIT, PDGF-R und c-FMS, welche am Knochenstoffwechsel beteiligt sind. Die Stimulation des Rezeptors c-FMS bewirkt die Differenzierung monozytärer Vorläuferzellen in knochenabbauende Osteoklasten. Zusätzlich unterliegt die Entwicklung der knochenaufbauenden Osteoblasten spezifischen Signalkaskaden an denen PDGF-R und c-Abl beteiligt sind. Als Nebenwirkung einer TKI-Therapie beeinträchtigt die Inhibition dieser Signaltransduktionswege somit das Knochen-“Remodelling“, indem die Entwicklung und funktionelle Aktivität von Osteoklasten reduziert wird. Gleichzeitig wird die Aktivität von Osteoblasten gestärkt, aber deren Proliferation inhibiert. Diese Dysbalance von Knochenaufbau und -abbau mit gestörter Kalziumhomöostase bedingt bei erwachsenen CML-Patienten veränderte endokrinologische Parameter des Kalziumhaushaltes, eine vermehrte Knochenmineralisation und eine erhöhte trabekuläre Knochendichte. Dagegen wurden bei pädiatrischen CML-Patienten unter Imatinib-Therapie Längenwachstumsstörungen beobachtet, welche bezüglich des Wirkmechanismuses von Imatinib auf den wachsenden Knochen bis heute noch nicht im Detail geklärt sind. Spekulativ ist auch, ob Zweit- und Drittgenerations-TKI ebenso wie Imatinib den Knochenstoffwechsel bei pädiatrischen Patienten stören. Angelehnt an ein erfolgreiches Applikationsschema bei erwachsenen CML-Patienten steht zusätzlich die Frage im Raum, ob eine intermittierende Gabe von TKIs (einen Monat Therapie, einen Monat Pause) eine Minderung der Nebenwirkung auf den Knochen bewirken könnte, ohne die Wirkung auf die CML-Behandlung zu beeinträchtigen. Vor diesem Hintergrund wurde ein Nagermodel etabliert, um Nebenwirkungen auf den Knochenstoffwechsel unter TKI-Exposition zu analysieren. Junge, wachsende Ratten wurden hierzu vom präpubertären Alter bis zur Adoleszenz kontinuierlich oder intermittierend mit den TKIs Imatinib, Dasatinib und Bosutinib exponiert und die Wirkung auf das wachsende Skelettsystem untersucht. Methoden: 4 Wochen alte männliche Wistar Ratten wurden über einen Zeitraum von 10 Wochen chronisch mit jeweils einem der drei im Trinkwasser gelösten TKIs exponiert. Neben einer unbehandelten Kontrollkohorte erhielt eine Gruppe jeweils eine Standarddosis und eine hohe Dosis (entsprechend der doppelten Standarddosis) des entsprechenden TKIs kontinuierlich. Eine weitere Gruppe erhielt die hohe Dosis intermittierend (an drei aufeinanderfolgenden Tagen TKI, danach vier Tage nur Wasser). Die Konzentrationen im Trinkwasser betrugen für Imatinib 1 mM und 2 mM und für Dasatinib und Bosutinib jeweils 50 µM und 100 µM. Nach zweiwöchiger (präpubertär), vierwöchiger (pubertäres Stadium) und zehnwöchiger Exposition (postpubertär) wurden die Tiere aller Gruppen nekropsiert und Röhrenknochen, Lendenwirbel und Blut asserviert. Zur Beurteilung des Knochenmetabolismus wurden folgende Parameter erhoben: Knochenlängen, Knochendichten mittels pQCT, trabekuläre Strukturen mittels µCT, Knochenfestigkeit mittels des 3-Punkt-Biege-Test und endokrinologische Parameter im Serum mittels ELISA. Zusätzlich wurde der jeweilige TKI Serum-Spiegel bestimmt. Ergebnisse: Die Gewichtsentwicklung, körperliche Entwicklung und das Sozialverhalten zeigten keine Unterschiede beim Vergleich von Kontrollkohorten mit exponierten Tieren. Die kontinuierliche Exposition mit Imatinib und Dasatinib bewirkte dosisabhängig eine Reduktion der Knochenlängen der Femura und der Tibiae. Bosutinib zeigte diesen Effekt nicht. Die intermittierende Exposition mit hoher Dosis resultierte in einer Knochenlängenreduktion, welche exakt dem Effekt der Standarddosis entsprach. Weiterhin resultierte aus der Exposition mit Imatinib oder Dasatinib eine Verminderung der trabekulären Knochendichten der Femura und Tibiae im präpubertären Stadium. Ratten, welche hoch dosiert Imatinib erhielten, zeigten diese Reduktion ebenfalls im pubertären Stadium, nicht jedoch unter Dasatinib- und Bosutinib-Exposition. Postpubertär unterschieden sich die trabekulären Dichten von Femura und Tibiae der exponierten Gruppen nicht von den Kontrollkohorten. Auf die kortikale Knochendichte und die kortikale Dicke dieser Röhrenknochen zeigte sich kein messbarer Effekt der TKI. Dennoch trat - nur nach Exposition der hohen Imatinibdosis - eine signifikant verminderte femorale Bruchfestigkeit postpubertär auf. Am Lendenwirbelkörper war pubertär und postpubertär die Höhe unter Imatinib-Exposition vermindert, während die Gesamt- und kortikale Knochendichte präpubertär erhöht war bei tendenziell erniedrigter trabekulärer Knochendichte. Die kortikale Dicke wurde durch alle TKI nicht beeinflusst. Dasatinib und Bosutinib bewirkten keinen Effekt auf die Wirbelhöhe, aber eine tendenzielle Minderung der trabekulären Knochendichte. Der serologisch erfassbare Knochenresorptionsmarker „tatrate resistant acidic phosphatase“ (TRAP) war unter kontinuierlicher Exposition mit hoher Dosis von Imatinib zu allen Zeitpunkten erniedrigt. Postpubertär zeigte sich dieser Effekt auch unter Standard- und Hochdosis von Bosutinib. Der Knochenformationsmarker Osteocalcin war unter Imatinib bei allen Kohorten zu allen Analysezeitpunkten erniedrigt, während Dasatinib und Bosutinib keinen Effekt auf diesen Parameter zeigten. Die erfassten Serum-Hormonparameter (Wachstumshormon, Parathormon) lagen unter der Exposition mit Imatinib als erhöhte Wachstumshormonspiegel pubertär und als verminderte Parathormonspiegel prä- und pubertär vor. Unter der Exposition mit Dasatinib kam es ebenfalls pubertär zu einer Erhöhung der Wachstumshormonspiegel und präpubertär zu einer tendenziellen Erhöhung der Parathormonspiegel. Postpubertär normalisierten sich beide Parameter unter der Exposition mit Imatinib und Dasatinib wieder. Unter Bosutinib konnte nur postpubertär erniedrigte Parathormonspiegel ermittelt werden. Eine intermittierende TKI-Exposition resultierte in einem Aufholwachstum und einer teilweise Normalisierung der knochenspezifischen Serumparameter. Als wichtige unerwartete Nebenwirkung zeigte sich unter Langzeitexposition mit Imatinib und Dasatinib eine Zunahme des Herzgewichtes. Unter Imatinib resultierten daraus keine klinischen Auffälligkeiten, während unter Dasatinib eine Herzinsuffizienz zum Tod eines Tieres führte. Bosutinib zeigte keine weiteren makropathologisch erfassbaren Nebenwirkungen. Bis heute sind keine kardialen Nebenwirkungen bei pädiatrischen Patienten nach mehrjähriger TKI-Therapie publiziert. Schlussfolgerung: Das etablierte juvenile Nagertiermodell ist gut geeignet, um die Nebenwirkungen einer Langzeitexposition von TKI auf den wachsenden Knochen zu erfassen. Bei Kindern und Adoleszenten klinisch beschriebene Wachstumsretardierungen unter Imatinib ließen sich zweifelsfrei bei Ratten verifizieren. Bei fehlenden klinischen Daten von Kindern zu Dasatinib präjudiziert das Modell, dass Dasatinib so wie Imatinib den gleichen, Bosutinib hingegen kaum einen Effekt auf den Knochen ausübt. Eine intermittierende Gabe der TKI scheint die Nebenwirkungen auf den Knochen abzumildern und könnte eine neue Möglichkeit der TKI-Therapie für pädiatrische Patienten darstellen. Aus dem Tiermodell der Langzeit-exponierten juvenilen Ratte lässt sich ableiten, dass beim wachsenden Kind unter jahrelanger TKI-Therapie klinisch sorgfältig der Knochenstoffwechsel und das Längenwachstum überwacht und unter Dasatinib zusätzlich kardiale Nebenwirkungen beachten werden sollten. / Background: Since its approval in 2001 the tyrosine kinase inhibitor (TKI) imatinib has revolutionized the therapy of chronic myeloid leukaemia (CML). Imatinib inhibits the constitutively active tyrosine kinase (TK) BCR-ABL causing the increased proliferation of the leukemic cells and the progress of CML. According to improved survival rates imatinib has been licensed as frontline therapy also for paediatric CML in 2003. However, due to point mutations or structural changes within the BCR-ABL fusion protein resistance to imatinib occurs. Therefore 2nd and 3rd generation TKI like dasatinib and bosutinib have been developed. Beside BCR-ABL, Imatinib exerts also off-target effects on further TKs like c-KIT, PDGF-R, c-FMS which are involved in bone metabolism. Stimulation of the receptor c-FMS leads to the differentiation of monocytic progenitors to bone resorbing osteoclasts. In addition, the development of bone forming osteoblasts underlies specific signalling cascades involving PDGF-R and c-Abl. As a side effect of TKI therapy these specific signalling cascades are inhibited impairing bone remodelling by reducing the development and functional activity of osteoclasts. Simultaneously osteoblasts’ differentiation is promoted while their proliferation is inhibited. This dysbalance of bone formation and resorption results in altered endocrinological serum markers of the calcium homeostasis, increased bone mineralization, and increased trabecular bone density in adult CML patients. In contrast paediatric CML patients show longitudinal growth retardations under imatinib therapy, however, the detailed action of imatinib on the growing bone is not clarified yet. Additionally, it is unclear if 2nd and 3rd generation TKI will also disturb bone metabolism in paediatric CML patients. Based on an effective treatment strategy in adult CML patients, it is also questioned if intermittent TKI treatment (one month “on”, one month “off”) could minimise side effects on the bone without impairing CML therapy. On this background a rodent model was established to study side effects of TKI treatment on bone metabolism. Juvenile growing rats where exposed from prepubertal age till adolescence continuously or intermittently to imatinib, dasatinib, and bosutinib and the effects on the growing skeleton were analysed. Methods: Four weeks old male Wistar rats were chronically exposed to varying concentrations of one of the three TKIs via the drinking water for 10 weeks. Besides untreated controls a standard dosage group and a high dosage group (equalling the twofold standard dose) received every TKI continuously, while an additional group received the high dosage TKI in an intermittent fashion (3 days per week: “on” TKI; 4 days water without TKI). The concentrations applied were 1 mM and 2 mM for imatinib and 50 µM and 100 µM each for dasatinib and bosutinib, respectively. After 2 weeks (prepubertal), 4 weeks (pubertal stage), and 10 weeks (postpubertal) of exposure, respectively, animals were sacrificed and long bones, lumbar vertebra and blood were isolated. To evaluate bone metabolism the following parameters were analysed: bone length, bone mineral density (BMD) by pQCT, trabecular structure by µCT, bone strength by 3-point bending test, and endocrinological parameters by ELISA. Additionally, serum levels of TKIs were investigated. Results: In comparison to controls no alterations of exposed animals’ bodyweight, overall development and social behaviour were observed. Continuous exposure of imatinib and dasatinib led dose dependently to reduced femoral and tibial length. No such effect was observed under bosutinib. Intermitted exposure of high-dose TKIs resulted in reduced effects on femoral and tibial length identical to the effect observed in groups receiving just standard dose. Furthermore, exposure of imatinib and dasatinib lowered femoral and tibial trabecular BMD prepubertally. Rats receiving high dose imatinib showed reduced femoral and tibial trabecular BMD at pubertal stage, while this effect was not observed under dasatinib and bosutinib exposure. Postpubertally, femoral and tibial trabecular BMD of all exposed groups did not differ from controls. Femoral and tibial cortical BMD and cortical thickness were not affected by TKI exposure. However, under high dose imatinib exposure femoral mechanical breaking strength was reduced postpubertally. In vertebra the height was reduced under imatinib exposure pubertally and postpubertally, while the total and cortical BMD were increased prepubertally and trabecular BMD tended to be reduced. Cortical thickness was not affected by any TKI tested. Dasatinib and bosutinib exhibited no effect on the height of the vertebra but trabecular BMD tended to be reduced. The serum bone resorption marker ‘tartrate resistant acidic phosphatase’ (TRAP) was found reduced under continuous exposure of high dose of imatinib at all time points tested. Postpubertally, the same effect was detected after standard and high dosage of bosutinib. The bone formation marker osteocalcin was reduced in all groups and at all time points tested under imatinib exposure, whereas no such effect was observed for dasatinib and bosutinib. Serum bone related hormone markers (growth hormone (GH) and parathyroid hormone (PTH)) revealed under imatinib exposure increased GH levels pubertally whereas PTH was reduced pre- und pubertally. During dasatinib exposure GH levels were elevated pubertally and PTH levels were increased prepubertally. Postpubertally, both parameters normalised again under imatinib and dasatinib exposure. During bosutinib exposure reduced PTH levels were detected postpubertally only. Intermitted TKI exposure resulted in catch-up growth and partial normalisation of bone specific serum parameters. As major unexpected side effect during exposure increasing heart weights could be observed under long-time imatinib and dasatinib exposure. No clinical changes were observed under imatinib, whereas dasatinib led to cardiac insufficiency leading to death of one animal. Bosutinib showed no additional macrospathologic assessable side effects. To date no cardiac side effects were published in paediatric patients under prolonged TKI therapy. Conclusion: The established juvenile rat model is appropriate to examine side effects of long-term TKI exposure on the growing bone. Published longitudinal growth retardation in children and adolescents under imatinib treatment could be unequivocally mimicked in this rat model. Due to not yet available clinical experience with dasatinib in paediatric patients, this model predicts that dasatinib alters bone metabolism like imatinib whereas bosutinib shows less detectable effects. Intermitted TKI treatment may reduce side effects on the growing bone and therefore could represent a new opportunity of TKI therapy for paediatric patients. Summing up, TKI long-term exposure in this juvenile rat model challenges physicians to diligently monitor bone metabolism in not outgrown paediatric patients during long-term TKI treatment and additionally assess cardiac side effects under dasatinib exposure.
3

Anwendung mathematischer Modelle zur Vorhersage des Therapieverlaufs von CML-Patienten

Rothe, Tino 22 January 2018 (has links) (PDF)
Hintergrund Die chronische myeloische Leukämie (CML) ist eine myeloproliferative Er- krankung, die aufgrund ihres Modellcharakters unter der Behandlung mit Tyrosin-Kinase- Inhibitoren (TKI) gut für eine Beschreibung mittels computerbasierter Modelle geeignet ist. Grundlage für die Entstehung einer CML ist die Bildung eines Philadelphia-Chromosoms durch eine Translokation der Chromosomen 9 und 22. Es resultiert das Onkogen BCR- ABL1, welches für eine konstitutiv aktive Tyrosinkinase codiert. Diese führt zu ungeregelter Proliferation der betroffen Zellen und zur Verdrängung der gesunden Blutbildung. Das überaktivierte Protein kann durch TKIs gezielt gehemmt werden. Damit ist es möglich, die Tumorlast erheblich zu senken und das Fortschreiten der Erkrankung aufzuhalten. Aktuell werden in der klinischen Anwendung außerhalb von Studien TKIs für die gesamte Lebensdauer der Patienten eingesetzt. Absetzstudien zeigten, dass circa 50% der Patienten nach einer über zwei Jahren nicht nachweisbaren BCR-ABL1-Last nach Behandlungsstopp kein erneutes Anwachsen der Tumorlast aufwiesen. Die Anwendung von computergestützten Modellsimulationen hilft, Zugriff auf die klinisch nur schwer zu messenden leukämischen Stammzellen zu bekommen und darüber Vorhersagen über den weiteren Therapieverlauf zu treffen. Aufgabenstellung Im Rahmen der vorliegenden Arbeit sollen Möglichkeiten der Übertragung von Patientendaten auf das etablierte Modell nach Roeder und Loeffler (2002) verbessert werden. Die vom Modell vorhergesagten Stammzellkinetiken sollen abschließend auf Praxistauglichkeit geprüft werden. Material und Methoden Aufgrund der Vergleichbarkeit zu früheren Untersuchungen erfolgte die Auswahl von 51 Patienten des deutsches Armes der IRIS-Studie. Deren Therapieverläufe wurden analysiert und können über eine biphasische exponentielle (biexponentielle) bzw. über eine stückweise lineare Funktion beschreiben werden. Als Erweiterung der Arbeiten von Horn et al. (2013) wurden alle Parameter der biexponentiellen Funktion in die Entwicklung neuer Methoden einbezogen. Zusätzlich wurde untersucht, ob die Einbeziehung von zensierten Messpunkte die Form der biexponentiellen Funktion verändert. Basierend auf den Therapiedaten der IRIS-Patienten erfolgte die Ermittlung eines Para meterraumes für Eingangsparameter der Modellsimulation (Modellparameter), welcher in 270.400 individuelle Paramterkombinationen unterteilt wurde. Es erfolgten anschließend die Simulation und Auswertung nach der biexponentiellen Beschreibung. Auf Basis dieser erheblich größeren Datengrundlage konnten zwei neue Verfahren der Modellparameteridentifikation für individuelle Patienten entwickelt werden. Einerseits wurde in Anlehnung an die Arbeit von Horn et al. (2013) ein Verfahren unter Nutzung der Regression vorgestellt. Andererseits konnte über den Vergleich der Abstände zwischen simulierten und realen Therapieverläufen eine Suche (lookup-table) etabliert werden. Die Berechnung des Abstandes zwischen Therapieverläufen ermöglicht gleichzeitig den Vergleich der verschiedenen Verfahren und damit eine Aussage über deren Anpassungsgüte. Zum Schluss wurde beispielhaft für einen Patienten das Verfahren der lookup-table angewendet und die resultierende Stammzellkinetik weiter analysiert. Ergebnisse Einführend erfolgte die Analyse der resultierenden biexponentiellen Funktion mit und ohne Einbeziehung von Messunsicherheiten. Es zeigte sich, dass der Verlauf dieser Funktion besonders in Bereichen, die von einbezogenen Messunsicherheiten betroffen sind, abweichend ist. Die Beschreibung des Langzeitverlaufs erfolgt jedoch annähernd gleich. Anschließend erfolgte die Validierung der Größe des vorsimulierten Datenpool anhand eines Vergleichs der statistischen Parameter von Patienten und Simulationen. Dieser zeigte sich dabei für die weiteren Untersuchungen geeignet. Die Nutzung der lookup-table zur Identifikation der am besten zu einem Patienten passenden Therapiesimulation ist überlegen sowohl gegenüber von der Horn et al. (2013) beschriebenen als auch in dieser Arbeit neu entwickelten Regressionsverfahren. Diese ergeben deutliche Abweichungen zwischen Patientendaten und Simulation. Eine Analyse des vorhergesagten Therapieverlaufes im Stammzellkompartiment ergibt jedoch, dass ähnliche Therapieverläufe im peripheren Blut durch stark unterschiedliche Stammzellkonfigurationen beschrieben werden können. Es resultiert eine starke Streuung der vorhergesagten Zeitpunkte eines möglichen Therapieendes. Schlussfolgerungen Die Nutzung der lookup-table zu Identifikation einer passenden Therapiesimulation ist hoch effektiv und anderen Verfahren, die auf Regression basieren, überlegen. Die etablierte Computersimulation nach Roeder und Loeffler (2002) bietet Zugriff auf die Therapie in der Ebene der Stammzellen. Die in weiteren Analysen gezeigten Streuungen der vorhergesagten Therapieverläufe im Stammzellkompartiment lassen den Schluss zu, dass Methoden zur Eingrenzung der Stammzellverläufe entwickelt werden müssen, um die Vorhersagen klinisch nutzbar zu machen. Weiterhin muss anhand von Messungen an Knochenmarkproben von realen Patienten geprüft werden, ob die von der Simulation postulierten Verläufe der Tumorlast im Stammzellkompartiment der realen Behandlung entsprechen. Ausblick Die in aktuellen Arbeiten beschriebene Rolle des Immunsystems im Therapieverlauf der CML (Saussele et al. 2016; Clapp et al. 2016) sollte in eine Verbesserung des Stammzellmodells nach Roeder und Loeffler (2002) einfließen. Weiterhin kann die Validierung der im Rahmen der Individualmedizin zu treffenden Absetzvorhersagen letztendlich nur über klinische Absetzuntersuchungen ermöglicht werden. / Background Chronic myeloic leukaemia (CML) is a myeloproliferative disease, which is well suited for modelling approaches. It is characterized by the oncogenic BCR-ABL1 fusion gene originating from an inverse translocation of the chromosomes 9 and 22 leading to the Philadelphia chromosome. The result is a constitutively activated tyrosine-kinase. This is followed by an extensive proliferation of leukaemic stem cells leading to a displacement of normal haematopoesis. The molecular specificity of CML forms the basis of a highly efficient, targeted therapy by tyrosine kinase inhibitors (TKIs). TKIs can decrease the tumour burden and slow down or eventually stop progressing of the disease. Currently, in clinical applications drugs are administered for the remaining life span. Interestingly, in recent treatment cessation trials patients were stopped after two years of non-detectable tumour burden and about 50% remained without relapse. The application of computer-based modelling helps to gain access to stem cell counts being difficult to measure clinically. This forms the basis for predictions of long-term therapy outcomes. Aim of this work This work aims on identifying a suitable algorithm to efficiently identify model simulations that optimally decribe individual patient kinetics. Furthermore, the clinical usability of the new methods was investigated. Material and methods The analysed group of patients was chosen out of the German cohort of the IRIS trial to ensure comparability to former investigations. It consists of 51 individuals. The course of leukaemic burden , i. e. leukaemic vs. non-leukaemic cells on a single patient level can be described as a biphasic exponential (bi-exponential) or a piecewise linear function. As an extension to former methods described by Horn et al. (2013) all parameters are included into further method development. Additionally, an investigation was conducted whether censored data points change the functional behaviour of a bi-exponential fit based on patients’ data. According to therapy data of all patients an input parameter space for the model simulation was delimited, such that all observed patient kinetics can be mimicked by the model. This parameter space was uniformly divided into 270.400 discrete parameter combinations. The therapy simulation of each combination was conducted and described by a bi-exponential function likewise to the patients’ fit. With the help of these huge variety of in silico therapies two new methods of model parameter identification for individual patients were developed. The first one is an advanced approach based on a regression model proposed by Horn et al. (2013). The second one by comparing distances between the patients’ and the models’ bi-exponential functions (lookup table). The comparison of the distances between different therapy courses (either simulated or patients’ data) was also used to compare the quality of different methods. As an example, for one patient the stem cell kinetics from the model were analysed in more detail and checked for robustness. Such a strategy, which might build the basis for clinical applications. Results A comparison between the different bi-exponential functions with and without censored data points revealed differences especially in the area in which censoring was performed. However, for the long-term tumour burden censored data had no influence. Secondly, an investigation was performed showing the sufficiency of the pre-simulated therapy courses for the new methods, i. e. lookup-table and regression models. The lookup- table turns out to be superior to identify a therapy simulation for a unique patient, since the complexity of linear regression models lead to increased deviations between patients’ therapy courses and the simulations. Unfortunately, distinct stem cell configurations lead to similar therapy descriptions in peripheral blood, assuming the correctness of the model. As a result, the prediction of a safe treatment cessation is often widely spread. Conclusions The new developed lookup-table to identify model simulations suitable for an individual patient is highly effective and superior to other methods using regression models. The simulation of the TKI treatment using the agent-based model of Roeder und Loeffler (2002) gives easy access to therapy courses on the level of leukaemic stem cells. Unfortunately, the finding of a well fitting simulation within the peripheral blood is not enough to provide a point of safe treatment cessation, since different stem cell configurations can lead to similar therapy courses. Additionally, it is necessary to check which of the assumed therapy courses on the stem cell level is appropriate. This could be done by gathering more information from bone-marrow punctures during the course of treatment. Outlook Investigations of new data showed the important role of the immune system in CML treatment (Saussele et al. 2016; Clapp et al. 2016). This should be taken into account by improving the model of Roeder und Loeffler (2002). Additionally, data from cessation trials can be used to validate the model assumptions.
4

Evaluation von KIR-Liganden Inkompatibilität bei unverwandten Knochenmark-/ Stammzelltransplantationen / Role of KIR ligand incompatibility in hematopoietic stem cell transplantation using unrelated donors

Martin, Hilmar 17 July 2005 (has links) (PDF)
We performed a retrospective study in 185 patients with myelogenous leukemias who had received hematopoietic cells from unrelated donors. The aim of this study was to answer the question wether the benefit of KIR ligand incompatibility seen in haploidentical tranplantations can also be seen using unrelated donors. We could not detect a significant difference in survival between patients with a KIR ligand incompatibility and those with either fully matched or partially mismatched unrelated donors in this patient cohort. / In der Therapie von Leukämien ist die Knochenmark- bzw. Stammzelltransplantation eine tragende Säule. Für den Transplantationserfolg ist eine Übereinstimmung der Haupthistokompatibilitätsantige (HLA-Antigene der Klassen I und II) zwischen Spender und Empfänger von zentraler Bedeutung. Diese Notwendigkeit ergibt sich aus der sogenannten MHC-Restriktion in der T-Zellrezeptorerkennung. Ob auch NK-Zellrezeptoren und deren Liganden in der Spenderauswahl berücksichtigt werden sollten, ist bisher unzureichend untersucht. Insbesondere trifft das für die KIR-Rezeptoren zu, die wie die T-Zellrezeptoren ebenfalls HLA-Antigene als Liganden besitzen. Velardi et al. haben 2002 erstmalig gezeigt, daß in der Therapie myeloischer Leukämien die Transplantation von Blutstammzellen verwandter Spender mit KIR-Liganden-Inkompatibilität von klinischem Vorteil ist. Ob KIR-Liganden-Inkompatibilität auch bei Knochenmark-/ Stammzelltransplantationen Unverwandter Bedeutung erlangen könnte, war zu Studienbeginn offen und blieb auch infolge diskrepanter Untersuchungsergebnisse von verschiedenen Arbeitsgruppen im Verlauf der Studie widersprüchlich. Im Rahmen dieser Arbeit wurde diese Fragestellung, die auch Teil einer internationalen Studie war, an 185 Spender-Empfänger-Paaren retrospektiv untersucht. Dabei wurde bei den Paaren einerseits die KIR-Liganden-Kompatibilität auf der Grundlage der HLA-C-Supertypen erschlossen (nach Velardi et al.). Andererseits konnte sie im internationalen Studienprogramm direkt aus dem KIR-Genotyp des Spenders und dem HLA-C-Supertyp des Empfängers ermittelt werden. Die Untersuchungen ergaben folgende Resultate: bei Vorliegen von KIR-Liganden-Inkompatibilität hat die Verwendung von ATG als Bestandteil der GvHD-Prophylaxe keinen Einfluß auf das klinische Ergebnis. Die Vermutungen von Giebel et al. wurden damit nicht gestützt. Die Bestimmung des KIR-Liganden-Status mit Hilfe der Rückschlußmethode allein aus dem HLA-Typ ist unzuverlässig. Für eine exakte Differenzierung ist die gleichzeitige KIR-Genotypisierung erforderlich. KIR-Liganden-Inkompatibilität ist bei unverwandten Knochenmark-/ Stammzelltransplantationen nicht von klinischem Vorteil. Auch ein gezieltes Aussuchen HLA-C-inkompatibler Spender auf der Grundlage einer KIR-Genotypisierung stellt derzeit keine therapeutische Option dar.

Page generated in 0.0333 seconds