1 |
Versagensprognose von Faser-Kunststoff-Verbunden basierend auf einer MehrskalenbetrachtungHühn, Dominic 21 February 2017 (has links) (PDF)
Diese Arbeit untersucht das Versagen von Faser-Kunststoff-Verbunden an dem Material Glasfaser/Epoidharz. Die mechanischen Eigenschaften des Epoxidharzes werden mitteln Zug-, Druck, und Torsionsversuch ermittelt und mittels eines eigen entwickelten Werkstoffmodells abgebildet.
Das Versagen innerhalb eines Rovings wird mithilfe von Mikromodellen bestimmt, in denen das Werkstoffmodell der Matrix eingesetzt wird. Der Fokus liegt dabei auf der Ermittlung eines geeigneten repräsentativen Volumenelementes (RVE) für die Mikrostruktur und die Ausarbeitung der Effekte aufgrund des Skalenübergangs.
Mit diesem RVE der Mikrostruktur wird das Bruchkriterium nach A. Puck. anhand virtueller Experimente kalibriert und in einem Mesomodell eingesetzt. Das Mesomodell bildet einen auf Druck beanspruchten Rohrprüfkörper ab und wird mit dem entsprechenden Experiment verglichen, um das Bruchverhalten des Rovings zu validieren.
|
2 |
Beitrag zur Anwendung der Tailored Fiber Placement Technologie am Beispiel von Rotoren aus kohlenstofffaserverstärktem Epoxidharz für den Einsatz in TurbomolekularpumpenUhlig, Kai 01 June 2018 (has links) (PDF)
In der vorliegenden Arbeit wird die Steifigkeits- und Festigkeitsauslegung von mittels der Tailored Fiber Placement (TFP)-Technologie hergestellten Faser-Kunststoff-Verbunden (FKV) am Beispiel eines einteiligen Rotors aus kohlenstofffaserverstärktem Epoxidharz (CFK) für den Einsatz in Turbomolekularpumpen (TMP) vorgestellt. Im Vergleich zu anderen textilen Fertigungsverfahren können mit Hilfe der TFP-Technologie Verstärkungsfaserrovings in der Ebene variabelaxial, d. h. mit ortsunabhängiger, frei wählbarer Richtung, definiert abgelegt werden.
Die sticktechnische Fixierung der Rovings mit Hilfe eines Nähfadens führt zu Welligkeiten und Materialinhomogenitäten in TFP-basierten Faser-Kunststoff-Verbunden (FKV). Dadurch werden die Materialeigenschaften beeinflusst. Mit Hilfe einer Prozessanalyse in Kombination mit morphologischen Untersuchungen werden in dieser Arbeit die welligkeitsinduzierenden Effekte in TFP-basierten FKV identifiziert und quantifiziert. Darauf aufbauend wird ein mesoskaliges Repräsentatives Volumenelement (RVE) einer TFP-Einheitszelle auf Basis von Finiten Elementen entwickelt. Mit Hilfe des RVE wird es erstmalig ermöglicht, die Dehnungs- und Spannungsverteilung sowie den lokalen Faservolumengehalt in TFP-basierten FKV zu berechnen und daraus wirklichkeitsnahe Materialkennwerte abzuleiten. Darüber hinaus wird anhand des RVE der Einfluss variierender TFP-Prozessparameter auf die resultierenden Steifigkeits- und Festigkeitseigenschaften analysiert.
Weiterhin wird der Einfluss des unter Langzeitbelastung eintretenden Matrixkriechens auf die Materialeigenschaften von TFP-basierten FKV untersucht. Anhand der Entwicklungsschritte eines CFK-TMP-Rotordemonstrators werden die Besonderheiten beim Auslegungsprozess für Bauteile aus TFP-Strukturen verdeutlicht. Neben der Erläuterung der Lastfälle von TMP-Rotoren wird die Entwicklung eines lastfallangepassten Faserlayouts unter Berücksichtigung von geometrischen Restriktionen beschrieben. Im Rahmen der Spannungsanalyse auf Basis der Finite Elemente Methode (FEM) erfolgt die Integration der mittels des RVE bestimmten Materialdaten in das FE-Modell schichtweise, entsprechend der verwendeten TFP-Prozessparameter. Die mit dieser Vorgehensweise berechnete Versagensdrehzahl und die ermittelten Eigenfrequenzen konnten in experimentellen Untersuchungen erfolgreich validiert werden. Durch die Integration der ortsaufgelösten RVE-basierten Materialdaten wird erstmalig nicht nur die Struktursteifigkeit, sondern auch die Festigkeit ausgehend von einem variabelaxialen TFP-Ablagemuster in einem TFP-basierten Bauteil vorhergesagt. Mit dem entwickelten TMP-Rotordemonstrator kann die Versagensdrehzahl gegenüber dem Stand der Technik um 45 % gesteigert werden. In der Arbeit wird auch herausgestellt, welche Änderungen der Geometrie von TMP-Rotoren aus FKV nötig sind, um eine werkstoffgerechte, an die orthotropen Eigenschaften von FKV angepasste Gestaltung zu realisieren und damit die Nenndrehzahlen weiter steigern zu können. Diese Erkenntnisse dienen in verallgemeinerter Weise der werkstoffgerechten Auslegung und Fertigung von TFP-basierten FKV-Bauteilen. / The present work demonstrates the stiffness and strength design of fiber reinforced plastics (FRP) made by the Tailored Fiber Placement (TFP) technology using the example of a a turbo molecular pump (TMP) rotor made of carbon fiber reinforced epoxy resin (CFRP). In contrast to other textile preform manufacturing processes, the TFP technology enables the placement of reinforcement rovings in arbitrary direction according to an user defined design path. In this technology a double locked stitch in a zigzag stitch pattern is used to fixate the rovings.
The fixation process leads to waviness and material inhomogeneities within the placed rovings resulting in reduced material properties in TFP-based fiber reinforced plastics. The wavinessinducing effects have been identified and quantified by detailed process analysis and morphological investigations. Subsequently, a meso-scaled representative volume element (RVE) of a TFP unit cell based on finite elements was developed. The RVE provides the opportunity to derive realistic material properties by calculating the stress and strain distribution as well as as the local fiber content in TFP-based FRP. In this work, the influence of different TFP process parameters on the resulting modulus and strength has been investigated using the RVE approach.
Additionally, long term loading effects leading to a reduced matrix modulus were analyzed numerically with the RVE. Based on the development of the CFRP TMP rotor specific characteristics of the design process for components made of TFP are clarified. Besides the explanation of loading conditions of TMP rotors the progress of a load-adapted fiber layout considering geometrical restrictions is demonstrated. For the stress analysis based on the Finite Element Method (FEM) material data calculated with the RVE according to the applied TFP process parameters have been integrated into the FE model. The numerically determined failure speed and the calculated eigenfrequencies were successfully validated by experimental tests. By implementing TFP specific material data in the FE model, both, the strucural rigidity as well as the strength, were predicted for the first time in a TFP-based component. Compared to the state-of-the-art, the developed TMP rotor offers an increased failure speed by 45 %. Furthermore necessary geometric modifications for FRP based TMP rotors in order to achieve a material-specific design adapted to the orthotropic material properties and thus to further increase the nominal rotational speeds were shown. These findings provide in a generalized way for a material-specific design of TFP-based FRP components.
|
3 |
Investigation of Alternative Polymer Composite Materials for Forming Applications / Untersuchung alternativer polymerer Verbundwerkstoffe für Anwendungen der UmformtechnikGuilleaume, Christina, Brosius, Alexander, Mousavi, Ali 09 July 2018 (has links) (PDF)
In diesem Paper werden Untersuchungen eines Tiefziehwerkzeugs aus Mineralguss vorgestellt. Der Grund für die Verwendung von Mineralguss als alternativen Werkstoff für schnelle Werkzeuge liegt in den relativ geringen Initialkosten zur Herstellung und seiner Eignung für Kleinserien und Prototypenversuche. Ähnliche Konzepte mit Werkzeugen aus Mineralguss haben gezeigt, dass eine entscheidende Grenze in der Tribologie und dem bei diesem Werkstoff großen Oberflächenverschleiß liegt. Daher fokussiert das vorliegende Paper auf die Ergebnisse der Analyse verschiedener Mineralgussmischungen unter Anwendung von Streifenzugbiegeversuchen. Die Reibzahl wurde hierbei berechnet und vergleichend einem Stahlwerkzeug gegenübergestellt. / This paper presents the investigation of polymer concrete drawing tools for deep drawing operations. The goal of using polymer concrete as an alternative material is a rapid tooling process at relatively low initial tools costs that is suitable for small batch production. Similar concepts based on hydraulic concrete and polymer composites have shown that the surface tri-bology and consequently wear is the main limiting factor. Therefore, this paper focusses on the results of strip draw-bending tests with different polymer concrete mixtures. The friction coefficient is calculated and compared to a steel tool.
|
Page generated in 0.0272 seconds