101 |
An approach to optimize the design of hydraulic reservoirsWohlers, Alexander, Backes, Alexander, Schönfeld, Dirk 28 April 2016 (has links) (PDF)
Increasing demands regarding performance, safety and environmental compatibility of hydraulic mobile machines in combination with rising cost pressures create a growing need for specialized optimization of hydraulic systems; particularly with regard to hydraulic reservoirs. In addition to the secondary function of cooling the oil, two main functions of the hydraulic reservoir are oil storage and de-aeration of the hydraulic oil. While designing hydraulic reservoirs regarding oil storage is quite simple, the design regarding de-aeration can be quite difficult. The author presents an approach to a system optimization of hydraulic reservoirs which combines experimental and numerical techniques to resolve some challenges facing hydraulic tank design. Specialized numerical tools are used in order to characterize the de-aeration performance of hydraulic tanks. Further the simulation of heat transfer is used to study the cooling function of hydraulic tank systems with particular attention to plastic tank solutions. To accompany the numerical tools, experimental test rigs have been built up to validate the simulation results and to provide additional insight into the design and optimization of hydraulic tanks which will be presented as well.
|
102 |
Decentralized energy-saving hydraulic concepts for mobile working machinesLodewyks, Johann, Zurbrügg, Pascal 02 May 2016 (has links) (PDF)
The high price of batteries in working machines with electric drives offer a potential for investment in energy-saving hydraulic systems. The decentralized power network opens up new approaches for hydraulic- and hybrid circuits. In addition, the regeneration of energy can be used at any point of the machine. For the example of an excavator arm drive with a double cylinder two compact hydraulic circuits are presented, which relieve a central hydraulic system.
|
103 |
Pressure Pulse Generation with Energy RecoveryRotthäuser, Siegfried, Hagemeister, Wilhelm, Pott, Harald 02 May 2016 (has links) (PDF)
The Pressure Impulse test-rig uses the principal energetic advantages of displacementcontrolled systems versus valve-controlled systems. The use of digital-control technology enables a high dynamic in the pressure curve, according to the requirements of ISO6605. Accumulators, along with inertia, make energy recovery possible, as well as, enabling the compression energy to be re-used. As a result of this, there is a drastic reduction in operating costs. A simulation of the system before starting the project allows the development risks to be calculated and the physically achievable performance limits to be shown.
|
104 |
Consistent Automation Solutions for Electrohydraulic Drives in Times of Industry 4.0Köckemann, Albert, Birke, Benno 02 May 2016 (has links) (PDF)
Electrohydraulic drives are primarily used whenever a low power/weight ratio, a compact build and/or large forces are required for individual applications. These drives are often used together with electric drive technology in machines. However, in terms of automation, unlike electric drives, electrohydraulic drives are still largely connected via analog interfaces and centralized closed control loops today. To compensate for this competitive disadvantage of hydraulic drive technology and, at the same time, significantly enhance its performance and diagnostics capability, a consistent automation solution has been developed that can be configured for both centralized and decentralized solutions. This contribution firstly gives an overview over this complete solution already available and its classification in the automation world. In a second step, the subset of decentralized drive solutions contained therein is presented in more detail and their benefits are explained on the basis of some exemplary applications.
|
105 |
Efficient and high performing hydraulic systems in mobile machinesFrerichs, Ludger, Hartmann, Karl 03 May 2016 (has links) (PDF)
Hydraulic systems represent a crucial part of the drivetrain of mobile machines. The most important drivers of current developments, increasing energy efficiency and productivity, are leading to certain trends in technology. On a subsystem level, working hydraulics are utilizing effects by improving control functions and by maximum usage of energy recovery potential. Independent metering and displacement control, partly in combination with hybrid concepts, are the dominating approaches. Traction drives gain advantage from optimized power split transmissions, which consequently are being used in a growing number of applications. On the level of components, increase of efficiency and dynamics as well as power density are important trends. Altogether, design of systems and components is more and more based on modular concepts. In this sense, among others, sensors and control elements are being integrated to actuators; electric and hydraulic technology is being merged. In order to achieve maximum efficiency and performance of the entire machine, control of hydraulics has to include the whole drivetrain and the entire mobile machine in its application. In modern words, mobile hydraulic systems are a part of cyber physical systems.
|
106 |
High Performance Drivetrains for Powerful Mobile MachinesSchumacher, Andreas, Rahmfeld, Robert, Laffrenzen, Heiko 03 May 2016 (has links) (PDF)
This paper discusses the current and future drivetrain perspectives of powerful mobile machines, especially in regards to TCO and drive performance. For the TCO-impact, the power losses of the components plays a big role and, if they are designed for efficiency, they have a significant and measurable influence. From the braking function point of view, this paper demonstrates not only the advantages of a valve-based over a control algorithm based solution, but also its innovative development directions towards a more sophisticated engine speed controller with optimized heat conversion into the oil. Also for the drivetrain subsystems, innovative components are discussed, like the hybrid control, combining the benefits of a non-feedback and a displacement control in one single assembly, or the variable charge system for further reduced energy consumption of the overall drivetrain.
|
107 |
The Liebherr Intelligent Hydraulic Cylinder as building block for innovative hydraulic conceptsLeutenegger, Paolo, Braun, Sebastian, Dropmann, Markus, Kipp, Michael, Scheidt, Michael, Zinner, Tobias, Lavergne, Hans-Peter, Stucke, Michael 03 May 2016 (has links) (PDF)
We present hereafter the development of the Liebherr Intelligent Hydraulic Cylinder, in which the hydraulic component is used as smart sensing element providing useful information for the system in which the cylinder is operated. The piston position and velocity are the most important signals derived from this new measuring approach. The performance under various load and temperature conditions (measured both on dedicated test facilities and in field in a real machine) will be presented. An integrated control electronics, which is performing the cylinder state processing, additionally allows the synchronized acquisition of external sensors. Providing comprehensive state information, such as temperature and system pressure, advanced control techniques or monitoring functions can be realized with a monolithic device. Further developments, trends and benefits for the system architecture will be briefly analyzed and discussed.
|
108 |
An integrated System Development Approach for Mobile Machinery in consistence with Functional Safety RequirementsLautner, Erik, Körner, Daniel 03 May 2016 (has links) (PDF)
The article identifies the challenges during the system and specifically the software development process for safety critical electro-hydraulic control systems by using the example of the hydrostatic driveline with a four speed transmission of a feeder mixer. An optimized development approach for mobile machinery has to fulfill all the requirements according to the Machinery Directive 2006/42/EC, considering functional safety, documentation and testing requirements from the beginning and throughout the entire machine life cycle. The functionality of the drive line control could be verified in advance of the availability of a prototype by using a “software-in-the-loop” development approach, based on a MATLAB/SIMULINK model of the drive line in connection with the embedded software.
|
109 |
Energy-efficient multistable valve driven by magnetic shape memory alloysSchiepp, Thomas, Schnetzler, René, Riccardi, Leonardo, Laufenberg, Markus 03 May 2016 (has links) (PDF)
Magnetic shape memory alloys are active materials which deform under the application of a magnetic field or an external stress. Due to their internal friction, recognizable from the strain-stress hysteresis, this new material technology allows the design of multistable actuators. This paper describes and characterizes an innovative airflow control valve whose aperture is proportional to the deformation of the active material and thus controllable by the input voltage. The multistability of the material is partially exploited within an airflow control loop to reduce the energy losses of the valve when a specific airflow value must be hold.
|
110 |
Advanced Proportional Servo Valve Control with Customized Control Code using White SpaceLauer, Peter 27 April 2016 (has links) (PDF)
An industrial control valve has been designed by Eaton (AxisPro® valve). The servo performance valve has onboard electronics that features external and internal sensor interfaces, advanced control modes and network capability. Advanced control modes are implement in the valves firmware. With the help of the white space it is possilbe to execute custom code directly on the valve that interact with these controls. Small OEM applications, like rubber moulding machines, benefit from the comination of build in controls and custom code, to provide adaptations for their special machines.
|
Page generated in 0.0217 seconds