• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 117
  • Tagged with
  • 117
  • 117
  • 117
  • 117
  • 30
  • 28
  • 19
  • 15
  • 15
  • 14
  • 12
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Reduction of System Inherent Pressure Losses at Pressure Compensators of Hydraulic Load Sensing Systems

Siebert, Jan, Geimer, Marcus 27 April 2016 (has links) (PDF)
In spite of their high technical maturity, load sensing systems (LS) have system-inherent energy losses that are largely due to the operation of parallel actuators with different loads at the same pressure level. Hereby, the pressure compensators of the system are crucial. So far, excessive hydraulic energy has been throttled at these compensators and been discharged as heat via the oil. The research project “Reduction of System Inherent Pressure Losses at Pressure Compensators of Hydraulic Load Sensing Systems” aims to investigate a novel solution of reducing such energy losses. The pressure of particular sections can be increased by means of a novel hydraulic circuit. Therefore, a recovery unit is connected in series with a hydraulic accumulator via a special valve in the reflux of the actuators. The artificially increased pressure level of the section reduces the amount of hydraulic power to be throttled at the pressure compensators. As long as a section fulfills the switching condition of the valve, pressure losses at the respectiv pressure compensator can be reduced. Thus, via a suitable recovery unit excessive energy can be regenerated and can be directed to other process steps eventually.
42

Validation of the physical effect implementation in a simulation model for the cylinder block/valve plate contact supported by experimental investigations

Wegner, Stephan, Löschner, Fabian, Gels, Stefan, Murrenhoff, Hubertus 27 April 2016 (has links) (PDF)
Overall losses in swash plate type axial piston machines are mainly defined by three tribological interfaces. These are swash plate/slipper, piston/cylinder and cylinder block/valve plate. Within a research project, funded by the German Research Foundation, a combined approach of experimental research and simulation is chosen to acquire further knowledge on the cylinder block/valve plate contact. The experimental investigations focus on the friction torque within the contact and the measurement of the cylinder block movement in all six degrees of freedom. Simultaneously a simulation model is created focusing on the main physical effects. By considering the results of the experimental investigations significant physical effects for the simulation model are assessed. Within this paper a first comparison between experimental results and the simulation is presented, showing that for a qualitative match the implemented effects (mainly the fluid film, solid body movement, solid body contact, surface deformation) are sufficient to model the general behaviour of theinvestigated pump.
43

An Investigation of the Impact of the Elastic Deformation of the End case/Housing on Axial Piston Machines Cylinder Block/Valve Plate Lubricating Interface

Chacon, Rene, Ivantysynova, Monika 27 April 2016 (has links) (PDF)
The cylinder block/valve plate interface is a critical design element of axial piston machines. In the past, extensive work has been done at Maha Fluid Power Research center to model this interface were a novel fluid structure thermal interaction model was developed which accounts for thermal and elasto-hydrodynamic effects and has been proven to give an accurate prediction of the fluid film thickness. This paper presents an in-depth investigation of the impact of the elastic deformation due to pressure and thermal loadings of the end case/housing on the performance of the cylinder block/valve plate interface. This research seeks to understand in a systematic manner the sensitivity of the cylinder block/valve plate interface to the structural design and material properties. A comparison between simulations results is done by utilizing different end case designs and material compositions, both in the valveplate and end case solids.
44

Optimization of Axial Piston Units Based on Demand-driven Relief of Tribological Contacts

Haug, Stefan, Geimer, Marcus 27 April 2016 (has links) (PDF)
Markets show a clear trend towards an ever more extensive electronic networking in mobile and stationary applications. This requires a certain degree of electronic integration of hydraulic components such as axial piston pumps. Beside some wellknow approaches, the transmission of axial piston units still is relatively unexplored regarding electronification. Nonetheless there is a quite high potential to be optimized by electronic. In view of this fact, the present paper deals with the tribological contacts of pumps based on a demand driven hydrostatic relief. The contact areas at cylinder - distributor plate, cradle bearing and slipper - swash plate will be investigated in detail and it will be shown how the pump behavior can be improved considerably through a higher level of relief and a central remaining force ratio. The potential of optimization is to improve the efficiency, especially in partial loaded operation, power range, also for multi quadrant operation, precision and stability. A stable lubricating film for slow-speed running and for very high speeds at different pressures is ensured as well.
45

Visualization of cavitation and investigation of cavitation erosion in a valve

Krahl, Dominik, Weber, Jürgen, Fuchs, Maik 27 April 2016 (has links) (PDF)
Avoiding cavitation and especially cavitation erosion are tasks, which have to be considered when working with hydraulics. State of the art is the assessment of the risk of erosion by component testing or to completely avoid cavitation by means of CFD. Another reliable method to assess the risk of cavitation erosion is until now not available. This paper deals with this problem and delivers comparative values for a later method development. In a first step the cavitation of a poppet valve, which controls a methanol flow, is visualized. The resulting three cavitation appearances are deeply examined. After that the results of long-term tests at different operation conditions are presented. A poppet surface analysis following each experiment has shown different types of surface attacks. As a result of this work it is shown that both cavitation appearance and surface attack are strongly influenced by the temperature dependent air solubility of the liquid.
46

Effects of air dissolution dynamics on the behaviour of positive-displacement vane pumps: a simulation approach

Furno, Francesca, Blind, Vincent 27 April 2016 (has links) (PDF)
The aim of this paper is to evaluate the effects of the dissolution time – time for the liquid to absorb the gas till the saturation state - on the behaviour of positivedisplacement vane pumps, in terms of pressure peaks within internal chambers and forces applied to the stator ring. The chamber pressurization depends on the volume variation and fluid Bulk modulus in the pre-compression phase during which the volume is trapped between the suction and the delivery port rims. If the dissolution time is short, then the entrained air is quickly absorbed and the fluid Bulk modulus sharply increases just before opening the connection to the outlet; as a consequence, pressure peaks may appear thus degrading the NVH characteristics of the pump. Moreover the pressure within internal chambers generate i) a torque demand to the driver (the combustion engine or an electrical motor) and ii) a total force applied to the stator ring. In case of fixed displacement designs, the resultant pressure force simply represents a load for support bearings; while in case of variable designs, it contributes to the displacement regulation. Simulation results show that the pump behaviour is very sensitive to the dissolution time when it is quite close to the duration of the trapped period.
47

Performance of an electro-hydraulic active steering system

Fischer, Eric, Sitte, André, Weber, Jürgen, Bergmann, Erhard, de la Motte, Markus 27 April 2016 (has links) (PDF)
Hydrostatic steering systems are used in construction and agricultural machines alike. Because of their high power density, hydraulic drives are qualified for the use in vehicles with high steering loads. Conventional hydrostatic steering systems are limited in terms of steering comfort and driver assistance. For realisation of appropriate steering functions, electro-hydraulic solutions are necessary. This paper provides an overview on existing implementations and introduces a novel steering system. The presented active steering system with independent meter-in and meter-out valves fills the gap between existing active steering systems and steer-by-wire solutions. An appropriate control and safety concept provides advanced steering functions for on-road usage without the fully redundant structure of steer-by-wire systems.
48

Energy-efficient steering systems for heavy-duty commercial vehicles

Winkler, Torsten, de Zaaijer, Rik, Schwab, Christian 28 April 2016 (has links) (PDF)
Besides the braking system the steering system is one of the most important systems on vehicles. The reliability and the performance of a steering system decides on the controllability of the vehicle under normal conditions as well as emergency situations. In everyday use the characteristics, the connectivity to assistance systems and the energy efficiency of the steering system become more and more important to fulfill the increasing demands regarding fuel consumption, carbon dioxide emissions and comfort. To meet these demands, new steering systems must be implemented and new technologies have to be developed. This contribution compares different approaches regarding functionality and energy efficiency to give an indication which system is the most promising solution for future front axle steering systems as well as rear steered axles (tag- or pusher axle) on trucks.
49

Automated calibration of a tractor transmission control unit

Körtgen, Christopher, Morandi, Gabriele, Jacobs, Georg, Straßburger, Felix 28 April 2016 (has links) (PDF)
This paper presents an approach for an automated calibration process for electronic control units (ECU) of power split transmissions in agricultural tractors. Today the calibration process is done manually on a prototype tractor by experts. In order to reduce development costs the calibration process is shifted from prototype testing to software modelling. Simultaneous optimization methods are used within the software modelling to calculate new parameters. The simultaneous optimization includes objective evaluation methods to evaluate the tractor behaviour. With the combination of both methods inside the software modelling, the calibration process can be automated. The success of this approach depends on the quality of the software modelling. Therefore the identification of the initial prototype behaviour and the fitting of the tractor software model is done at the beginning. At the end of the automated calibration the validation and fine-tuning of the calculated parameters are done on the real tractor. These steps are condensed to a five step automated calibration process which includes simultaneous optimization and objective evaluation methods in several applications. After the detailed discussion of this automated calibration process one function of the ECU (one transmission component) will be calibrated through this process as example.
50

Experimental loss analysis of displacement controlled pumps

Lux, Jan, Murrenhoff, Hubertus 28 April 2016 (has links) (PDF)
Current efficiency measurements of variable hydraulic axial piston pumps are performed with the displacement system locked at maximum volume, thus without the controller. Therefore, the controller’s effect on the efficiency is not quantified at state of the art measurements. Former research on control systems mainly focused on the dynamic behaviour. This paper aims to quantify the losses in the displacement and control system and to research the dependencies of those. Therefore, a test rig is built up at IFAS to measure the control power of displacement controlled pumps. Furthermore, a simulation tool is developed to increase the understanding of the loss mechanisms of the investigated control systems. In conclusion, the paper shows the potential of efficiency improvements for displacement controlled pumps.

Page generated in 0.0217 seconds