• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 535
  • 24
  • Tagged with
  • 559
  • 519
  • 515
  • 512
  • 99
  • 45
  • 45
  • 39
  • 34
  • 33
  • 31
  • 31
  • 31
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
451

Development of a Framework for Concept Selection and Design Automation : Utilizing hybrid modeling for indirect parametric control of subdivision surfaces

Eklund, Adam, Karner, Jesper January 2017 (has links)
Saab Aeronautics’ section Overall Design and Survivability develops early aircraft concepts and utilizes Computer Aided Design (CAD) to ensure the feasibility of principal- and critical characteristics. Saab has over the years developed several start models of aircrafts in CAD from pre-defined aircraft configurations, which are to some extent non-generic. When new configurations are to be explored, manual- and repetitive work is required if the new configuration cannot be attained solely through parametric modifications of a start model. The complexity of these CAD models also demands great knowledge of how aircraft components interact with each other to ensure compatibility. The project covered in this thesis was thus carried out to develop a more effective way for Saab to create and explore a larger design space. This by creating a framework that consists of a product configurator coupled with a library of generic CAD models. The product configurator that was created is the Saab Tradespace Analyzer & Reconfigurator (STAR), which takes compatibility relationships into consideration to facilitate concept selection. The STAR also provides a dynamic design space calculation to indicate how close the user is to a final concept selection. Two generic CAD models were created, a fuselage model and an air inlet model. A skeleton model was also created in order to reduce model dependencies and to control the main geometry of the aircraft product. In addition to these, an already existing wing model was implemented to form the library of generic CAD models. The framework coupling the STAR with the CAD library utilizes design automation to allow automatic CAD model generation of a concept that has been selected within the STAR. It was concluded through extrapolation that the created framework would allow Saab to create and explore a larger design space in a more effective way than what is done today, provided the library of CAD models were to contain the same number of components as today’s start models.
452

Ray Tracing and Spectral Modelling of Excited Hydroxyl Radiation from Cryogenic Flames in Rocket Combustion Chambers

Perovšek, Jaka January 2018 (has links)
A visualisation procedure was developed which predicts excited hydroxyl (OH*) radiation from the Computational Fluid Dynamics (CFD) solutions of cryogenic hydrogen-oxygen rocket flames. The model of backward ray tracing through inhomogeneous media with a continuously changing refractive index was implemented. It obtains the optical paths of light rays that originate in the rocket chamber, pass through the window and enter a simulated camera. Through the use of spectral modelling, the emission and absorption spectra eλ and κλ are simulated on the ray path from information about temperature, pressure and concentration of constituent species at relevant points. By solving a radiative transfer equation with the integration of emission and absorption spectra along the ray line-by-line, a spectral radiance is calculated, multiplied with the spectral filter transmittance and then integrated into total radiance. The values of total radiances at the window edge are visualised as a simulated 2D image. Such images are comparable with the OH* measurement images. The modelling of refraction effects results in up to 20 % of total radiance range absolute difference compared to line-of-sight integration. The implementation of accurate self-absorption corrects significant over-prediction, which occurs if the flame is assumed to be optically thin. Modelling of refraction results in images with recognisable areas where the effect of a liquid oxygen (LOx) jet core can be observed, as the light is significantly refracted. The algorithm is parallelised and thus ready for use on big computational clusters. It uses partial pre-computation of spectra to reduce computational effort.
453

Experiment Design for System Identification on Satellite Hardware Demonstrator

Krantz, Elias January 2018 (has links)
The subject of this thesis covers the process of online parameter estimation of agile satellites. Accurate knowledge of parameters such as moment of inertia and centre of mass play a crucial role in satellite attitude control and pointing performance. Typically, identification of parameters such as these is performed on-ground using post-processing algorithms. This thesis investigates the potential of performing the identification procedures in real-time on-board operating satellites, using only measurements available from typical satellite attitude sensors.    The thesis covers the areas of system identification and modelling of spacecraft attitude dynamics. An algorithm based on the Unscented Kalman Filter is developed for online parameter estimation of spacecraft moment of inertia parameters. The proposed method is successfully validated, both through simulation environments, and in practice using Airbus’ satellite hardware demonstrator INTREPID, a three-axis air-bearing table equipped with CMG actuators and typical attitude sensors.
454

Development of Robust Automated Handling of pre-impregnated Carbon Fibre

Martinsson, Fredrik January 2018 (has links)
Prepreg is a fibre reinforced polymer composite material often used by the aeronautical industry. The material supplier has pre-impregnated the fibre often with an epoxy resin and cured it to a semi-viscous B-stage where the material is tacky (adhesive). Manual layup of prepreg components is still common because there are only a few automated layup techniques which has limited geometric capability and high investment cost. Swerea SICOMP is a research institute which have in collaboration with partners developed a manufacturing demonstrator for automated layup of carbon fibre prepreg components based on robotic handling. The manufacturing demonstrator is able to; feed out prepreg from a spool onto a cutting table, cut the prepreg into plies, pick the plies from the cutting table and place them on a layup table, consolidate the prepreg plies on the layup table and remove the backing paper that covers one side of the prepreg. Three robustness problems has been identified and these forms the bulk of this master’s thesis. The first problem is that the robot is unable to place the plies on the cutting table with sufficient accuracy due to fluctuating position of the prepreg on the cutting table. The second problem is that the end effector used for the pick and place operation sometimes fails to pick the adhesive plies from the cutting table. The problem originates in limited holding force by the end effectors suction cups and limited capability to perform a peeling motion when picking due to the design of the end effector. The third problem is that process variables like temperature is believed to effect the robustness of the demonstrator but has not been further studied. The first problem was solved by implementing a probing routine which measures the position of the prepreg on the cutting table with an array sensor mounted to the robot. The measurement values are used to reprogram subsequent operations. The second problem seems to be solved by designing and implementing a new pick and place end effector. The new end effector has higher holding force and better capability to perform a peeling motion while picking and placing the tacky prepreg plies. Tests with the new end effector has been promising, the pick and placeoperation performs robustly, but all ply geometries was not tested and some minor adjustment is needed to further improve the placing accuracy. The third problem has not been solved but studied. A literature study reviled that temperature, relative humidity and prepreg out of freezer age is likely to effect the prepreg adhesive properties which in turn is known to effect the robustness. A test procedure has been devised to test how these variables effect the robustnessof the demonstrator. The tests should be conducted when all process steps in the demonstrator is up and running.
455

Ersätta APU:n med SOFC-GT Hybridsystem inom luftfarten

Sarwari, Javid, Heidari, Abbas January 2018 (has links)
The current Auxiliary Power Unit (APU) contributes a lot to the greenhouse effect in terms of emissions, and in the form of noise and also is very heavy. The need for more electricity has increased in aircrafts and therefore major aircraft suppliers like Boeing and Airbus want to switch to more electric aircraft (MEA) which is lighter and has less environmental impacts. The purpose of this work is to investigate the possibilities of replacing today's traditional APU with fuel cells. In this work presents six different common fuel cell types which used commercially in various areas in the market. We have also analyzed and investigated the most suitable fuel cell types and have chosen to apply the SOFC-GT Hybrid Systems. We have investigated and compared both systems with pros and cons. We have used different methods in this work including the FOI3-method and Safran & Honeywell for calculations of emissions for all systems. Finally, we have analyzed and investigated the emissions, noise and weight for both systems. / Nuvarande Auxiliary Power Unit (APU) bidrar mycket negativt till växthuseffekten i form av emissionsutsläpp och även i form av buller och är dessutom mycket tunga. Behovet av mer elektricitet ökar i flygplan och därför vill stora flygplanstillverkare såsom Boeing och Airbus övergå till more electric aircraft (MEA) vilket är lättare och har mindre miljöpåverkan. Syftet med detta arbete är att undersöka möjligheterna av att ersätta dagens traditionella APU mot bränsleceller. I detta arbete presenteras sex olika bränslecellstyper som finns på marknaden och används kommersiellt inom olika områden. Vi har analyserat och undersökt de lämpligaste bränslecellstyper för applicering och därefter har vi valt att implementera SOFC- GT Hybridsystemen. Vi har undersökt och jämfört båda systemens för- och nackdelar. Metodmässigt används bland annat FOI3-Metoden och Safran & Honeywell för beräkningar av utsläpp av emissioner för samtliga system. Slutligen har vi analyserat och undersökt skillnader i utsläpp av emissioner, buller och vikt för båda systemen.
456

Development and Implementation of a Mission Planning Tool for SONATE

Rapp, Thomas January 2017 (has links)
In the scope of the master's project which is documented with the present thesis a mission planning tool (MPT) for SONATE was developed and implemented. After a thorough research on the current state of the art of MPTs and taking especially the early stage of the SONATE mission into account, it was decided to develop a generic timeline-based MPT. In contrast to existing MPTs a system is envisioned which is both powerful, regarding advanced features like resource control, and applicable for small satellite missions regarding the overall complexity and the associated configuration and training effort. Although it was obvious from an early stage that this vision cannot be reached in the scope of this project, it was kept during the project definition, object oriented analysis and early design stages in order to allow future extensions. Also the decision to develop the MPT on top of the Eclipse Rich Client Platform is mainly due to the argument of future extensibility. The MPT, which is released with this thesis, hence is a very basic generic timeline-based MPT omitting all possible advanced features like resource control or procedure validation, but featuring all essential parts of a MPT, i.e. modelling of procedures, scheduling of activities, and the generation of telecommand sequences. Furthermore, the user is supported by an intuitive graphical user interface. The thesis documents the development process, thus giving a broad understanding of the design and the implementation. For specific details of the implementation one may also refer to the separate technical documentation, while a user handbook included as appendix. The characteristics of the SONATE mission as a technology demonstrator for highly autonomous systems raise several important questions regarding the overall mission planning process. Therefore, besides the actual development of the MPT, those questions are discussed in a theoretical manner in the scope of this thesis, taking also account of the general emergence of highly autonomous satellites systems.Three concepts, Safe Planning, Sigma Resource Propagation, and Direct Telemetry Feedback, are proposed to face the challenges rising from the foreseen alternation of phases of classical mission operations and phases of autonomous operations of the satellite. Concluding the thesis, the final software product's features and capabilities are verified against the previously defined requirements and thus the overall success of the project is determined to be a 100% success fulfilling all primary project objectives. Finally, several fields for further research on the topic in general and work on the MPT itself are identified and outlined to pave the way for follow-up projects. / SONATE
457

Dynamics and electronics of a manually chargeable quadcopter for steady-state flight

Kantsaporidis, Ioannis, Al-Attar, Sadeq January 2017 (has links)
The objective of this thesis is to investigate how the onboard battery of a quadcopter can be charged through manual rotation of its motors, while understanding the resulting aerodynamical forces acting on the rotors during hover, as well as considering the changes in thrust capabilities when the electronic and structural design are altered. A theoretical approach using the momentum theory will present a general understanding of rotor performance whilst describing the correlation between rotor parameters, thrust and mechanical power. Furthermore, the idea of using the motors as generators are put under study to investigate their electrical output and utilize them to recharge the battery. This is done using the counter electromotive force equation, and a sequence of other equations that will present numerical data of actual manual work converted into electrical power. Resulting in the required time to manually recharge the quadcopter subsequently sustaining hover flight for three minutes. It is concluded in this report that manual recharging of the battery using the motors as generators is possible, as well as maintaining its flying ability in case of added weight. Although not deemed practical in commercial use, it is a new methodology with the intention to develop a sustainable quadcopter further expanding its practical applications in both aviation industry and human aid.
458

High Magnetic Field in Low Temperature Vacuum Conditions : Magnet Design, Modeling and Testing

Schmid, Nehir January 2020 (has links)
The Swiss Free Electron Laser (SwissFEL) at the Paul Scherrer Institute is a national prestige project that will enable ground breaking new x-ray scattering experiments in areas such as biology, chemistry and physics. A plannedactivity is to generate possibility for x-ray diffraction under high pulsed magnetic fields to explore quantum mattermaterials. In fact, an entire beam line (CristallinaQ), dedicated to extreme sample environment (vacuum, electro-magnetic field, low temperature).This Master’s thesis project concerns the development of a magnet system for pulsed magnetic fields to be synchronised with the free electron laser pulses. The system is based on small-sized coils. This makes the systemtransportable and avoids the huge financial challenges and power requirements of the magnets at pulsed fields laboratories at Toulouse, Dresden or Tallahassee. Ultimately the magnet shall provide large pulsed fields of more than 30 T under conditions very similar to space, i.e. vacuum, low-temperature.The thesis presents the development of a complete coil manufacture and testing setup including a capacitor bank topower the magnet. With planned upgrades of the equipment, the coil manufacturing process is reaching reproduceable levels. I produce a first iteration of magnet coils. They follow a classical copper conductor design reinforcedwith an epoxy-Zylon matrix. During testing we produced 15 Tesla fields without degradation of the coils. At lastI analyse the observations from the tests and propose improvements and future steps for the further developmentof the magnet.
459

Passenger Flight Experience of Urban Air Mobility

Persson, Daniel January 2019 (has links)
The first part of a study of passenger flight experience of Urban Air Mobility was completed. This first part included the design of different Urban Air Mobility vehicle models, in which the passenger flight experience would be quantitatively measured. A first version of a simulator setup, in which the measurements were performed, was also developed. Three concept vehicle models, a single main rotor, a side-by-side rotor and a quadrotor, were designed in the conceptual design software NDARC. The vehicles were electrically propelled with battery technology based on future technology predictions and were designed for autonomous flight with one passenger. The emissions of the vehicles were analyzed and compared with an existing turboshaft helicopter. The interface between NDARC and the flight dynamics analysis and control system software FlightCODE, which was used to create control systems to the NDARC models,  was developed to fit the vehicle configurations considered. The simulator setup was created with a VR headset, the flight simulation software X-Plane, an external autopilot software and stress sensors. Trial runs with the simulator setup were performed and gave important data for the continued development. Planned upgrades of the simulation station were presented and the continuation of the study was discussed.
460

Fatigue life validation of aircraft materials

Ramesh, Aashish, Kalkur, Gaurav January 2020 (has links)
Fatigue is one of the critical design aspects with immense significance where thefatigue life of a material can be stated as the number of cycles that a componentcan withstand under a particular type of loading without failure. The design processhas to include fatigue analysis in order to predict failure due to fatigue. This helpsin maintenance and servicing of a component reducing the chance of failure duringoperation of the component. Increased efficiency of predictive maintenance improvesthe life of the component.This thesis aims to study the relationship between the experimental, analytical andnumerical solutions of two high strength aluminium alloys and one steel alloy fortheir life in aircraft applications covering the effects of geometrical irregularities. Italso aims to answer convergence between the numerical and the analytical methodwhen compared with each other. The simulations are carried out for three materialsamong many used in aircraft and industrial applications (Al 7050-T7451, Al 7075-T6 and AISI 4340 Steel) for a pre-defined set of geometries. The stress field andthe stress concentration factor variations are also studied to identify their effects onfatigue life.The results from this work forms a strong background for the future research alongside SAAB or any other industries using these materials for their structures to findout the failure or predicting it accurately. Also, integral structures can be analysedin detail using this thesis as a base.

Page generated in 0.0279 seconds