• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Risque de multicontaminations en mycotoxines et moyens de désactivation par les parois de levures et levures enrichies en glutathion ou sélénométhionine / Study of the effect of a multi mytoxin contamination on the reproductive system and on the developement of urany tract cancer

Hadjeba-Medjdoub, Kheira 05 June 2012 (has links)
Tout au long de la chaîne alimentaire, des moisissures peuvent se développer et produire des mycotoxines. Ce sont des composés toxiques naturels issus du métabolisme secondaire des moisissures, susceptibles de contaminer l'alimentation animale et humaine, provoquant de nombreuses pathologies (hépatotoxicité, néphrotoxicité, neurotoxicité, mutagénicité, tératogénicité, cancérogénicité,…). La première étape de ce travail était d'évaluer la présence simultanée de l'ochratoxine A (OTA), de la citrinine (CIT), des aflatoxines (AFs), de la zéaralénone (ZEA), de la fumonisine (FB) et des trichothécènes dans des aliments destinés aux humaines (céréales, lait, café, jambon) et aux animaux (croquettes de chat et chien, foins). En général plusieurs mycotoxines coexistaient. Certains échantillons pour les humains dépassaient les limites autorisées en mycotoxines dans l'Union Européenne. Suite à l'étude de simulation d'apport en mycotoxines dans une ration quotidienne, nous avons constaté que les doses journalières admissibles (DJA) peuvent être dépassées. La deuxième phase consistait à étudier l'impact des mycotoxines seules ou en combinaison sur la viabilité cellulaire et la génotoxicité sur des modèles cellulaires (cellules rénales d'opossum (OK), cellules rénales humaines (HK2), cellules humaines de glandes mammaires (MCF7)) et chez des animaux (porc, rat). Nous avons montré que la CIT, la FB1 et la ZEA agissent en synergie sur la génotoxicité de l'OTA. Chez les animaux, nous avons montré qu'à des doses (5 ng d'OTA/kg poids corporel/ jour et de 200ng FB1/kg pc/j) correspondantes aux DJA, il y avait des effets génotoxiques (formation d'adduits à l'ADN). Nous avons mis en évidence l'implication des mycotoxines dans l'alimentation animale sur la baisse de fertilité et la tératogénicité chez les chats, ainsi que sur la mort des chevaux. Au cours de la troisième partie de cette étude, nous avons testé sur des cultures cellulaires (HK2 et MCF7) et in vivo (poulet) l'effet protecteur du glutathion (GSH) et de la sélénométhionine (SeMet) contre l'OTA responsable de cancers de voie urinaire et la ZEA responsable de baisse de fertilité. Le GSH est un puisant antioxydant et le sélénium est un oligoélément indispensable qui intervient comme co-facteur de nombreuses enzymes ayant des propriétés antioxydantes, comme les glutathion peroxydases. D'une manière générale, au niveau des cellules rénales, le GSH seul et la levure correspondante ont un effet bénéfique vis-à-vis de la génotoxicité de l'OTA ; par contre la sélénométhionine et la levure séléniée augmentent la génotoxicité de l'OTA et de la ZEA. Dans les cellules des glandes mammaires, il y a une nette amélioration vis-à-vis de la génotoxicité des deux mycotoxines lorsque les cellules sont exposées à une seule mycotoxine simultanément au GSH, à la sélénométhionine et aux levures enrichies. Chez les poulets, la diminution de la génotoxicité n'est pas exclusivement corrélée à la capacité des parois de levure ou des levures à adsorber l'OTA. Ces dérivés de levure ont gardé la propriété de partiellement métaboliser l'OTA dans l'intestin. Les parois de levures et les levures enrichies en GSH ont un meilleur pouvoir protecteur que celles enrichies en SeMet / Throughout the food chain, mold can grow and produce mycotoxins. These are toxic compounds "natural" from the secondary metabolism of molds that may contaminate the feed and food, causing many diseases (hepatotoxicity, nephrotoxicity, neurotoxicity, mutagenicity, teratogenicity, carcinogenicity, ...). The first stage of this work was to assess the level of multi-contamination by mycotoxins (OTA, CIT, Afs, ZEA, FB, DON) in food (cereals, milk, coffee, ham) and feed (pet food). Some samples analyzed exceeded the limits of mycotoxins in the European Union. Through the simulation study of mycotoxin intake in a daily diet, we found that the acceptable daily intake (ADI) may be exceeded. The second phase was to study the impact of mycotoxins alone or in combination on cell proliferation, genotoxicity in cellular models (OK, HK2, and MCF7) and animal (pig, rat). We have demonstrated genotoxic effects (formation of DNA adducts) at doses (5 ng OTA / kg bw / day and 200 ng FB1/kg bw / day) considered safe (ADI). We have shown that the CIT, FB1 and ZEA act synergistically on the genotoxicity of OTA. We pointed to the involvement of mycotoxins in animal feed on declining fertility and teratogenicity in cats, as well as the death of horses. In the third part of this study, we tested in cell cultures (HK2 and MCF7) and in vivo (chicken) the protective effect of glutathione (GSH) and selenomethionine (SeMet) against OTA responsible for urinary tract cancers and ZEA reducing fertility. GSH is considered as a potent antioxidant and selenium is a trace essential element that acts as a cofactor of enzymes such glutathione peroxidase. In summary, in kidney cells, GSH and GSH enriched yeast decrease OTA genotoxicity whereas SeMet and SeMet enriched yeast increase genotoxicity of OTA and ZEA. In mammary cells, whatever the compounds gentoxicty of OTA and ZEA significantly decrease. Decrease of OTA genotoxicity in chicken kidney cannot be exclusively explained by adsorption of OTA on yeast by products. The yeast products retain their ability to metabolize the OTA. GSH enriched yeast and yeast cell wells are more efficient than SeMet enriched yeast
2

Etude de la résistance de Cupriavidus metallidurans CH34 aux oxyanions sélénite et séléniate : accumulation, localisation et transformation du sélénium.

Avoscan, Laure 07 June 2007 (has links) (PDF)
Le sélénium est un élément trace essentiel pour les organismes vivants mais à forte concentration, il est très toxique. Les oxyanions sélénite et séléniate sont les formes les plus toxiques et prédominantes dans l'environnement. Certains micro-organismes jouent un rôle prépondérant en contribuant au cycle naturel du sélénium. Notre modèle d'étude Cupriavidus (anciennement Ralstonia) metallidurans CH34, bactérie tellurique issue de biotopes contaminés en métaux, est connu pour résister au sélénite (forme soluble du sélénium, très toxique et bio-assimilable) en le réduisant en sélénium élémentaire (forme précipitée insoluble et peu toxique). Afin de mieux comprendre les mécanismes de réduction du sélénium par les bactéries, trois méthodes de spéciation ont été combinées (SAX (XANES et EXAFS), HPLC-ICP-MS et SDS-PAGE-PIXE) et normalisées par la quantification du sélénium accumulé dans les bactéries. Les analyses de spéciation ont mis en évidence l'existence de deux voies de réduction du sélénium chez C. metallidurans CH34 : une voie d'assimilation transforme le sélénite et le séléniate en sélénium organique, identifié comme de la sélénométhionine et conduit à son incorporation dans des protéines bactériennes. L'espèce organique sélénométhionine semble être incorporée dans les protéines de façon non spécifique (présence de protéines séléniées). Une voie de détoxication précipite le sélénite en nanoparticules de sélénium élémentaire. Cette voie de détoxication ne se met pas en place après une exposition au séléniate malgré sa présence comme espèce minoritaire par rapport à l'exposition sélénite. Du sélénodiglutathion est détecté dans des bactéries stressées par une exposition au séléniate en milieu limité en sulfate. Les bactéries exposées à du sélénite accumulent 25 fois plus de sélénium que lorsqu'elles sont exposées à du séléniate. L'étude de mutants résistants au sélénite, n'exprimant pas la protéine membranaire DedA, a montré que l'accumulation du sélénium après exposition au sélénite est diminuée comparé à la souche sauvage signifiant un probable lien entre la prise en charge du sélénite et la protéine DedA. Enfin, le séléniate semble emprunter la sulfate perméase de C. metallidurans CH34.
3

Développement d’une approche analytique pour la caractérisation du sélénoprotéome in vivo / Development of analytical methodology for selenoproteomics

Bianga, Juliusz 21 February 2013 (has links)
Le sélénium est un micronutriment essentiel pour des nombreux organismes vivants, y compris l’homme. Son rôle est lié à sa présence dans des sélénoprotéines sous forme d’un acide aminé, génétiquement encodé – la sélénocystéine. Il y a 25 sélénoprotéines encodées dans le génome humain. Leurs fonctions, la cinétique et la hiérarchie d'expression se trouvent au cœur des problématiques de recherche concernant le sélénium et la santé humaine. Il existe également un autre type de protéines où le sélénium est inséré par un remplacement partiel du soufre dans la méthionine mais aussi, potentiellement, dans la cystéine. Ces protéines suscitent l’intérêt dans les sciences de nutrition comme source de sélénium biodisponible dans l’alimentation naturelle et supplémentée. L'objectif de cette thèse a été la mise au point de méthodologies analytiques visant la spéciation du sélénium incorporé dans les protéines à l’échelle du protéome entier. Une procédure inédite a été développée pour la détection globale de protéines séléniées dans des gels d’électrophorèse bidimensionnelle par l’imagerie d’ablation laser ICP MS (spectrométrie de masse plasma à couplage inductif) permettant de s’affranchir de l’utilisation de l’isotope radioactif 75Se. Les autres avancées comprennent la mise en place d’un couplage robuste de HPLC capillaire avec l’ICP MS pour la détection des sélénopeptides dans des microvolumes de digestats trypsiques des protéines extraites du gel ainsi que la mise en place des protocoles d’identification des protéines séléniées par la spectrométrie de masse électrospray en tandem utilisant la trappe orbitale (Orbitrap). Les méthodes développées ont permis (i) la caractérisation de la part du protéome sélénié contenant la sélénocystéine chez la levure séléniée, (ii) l’identification des protéines majeures qui accumulent le sélénium dans le blé, et (iii) le dosage semi quantitatif et la caractérisation globale des sélénoprotéomes (GPx1, GPx4, TRxR1, TRxR2, Sel15kDa) dans les lignées cellulaires. / Selenium is an essential micronutrient for many living organisms including man. Its role is related to selenoproteins which contain genetically encoded selenocysteine. There are 25 selenoproteins encoded in the human genome. Their function, expression kinetics and hierarchy have been a topic of intense research in life sciences. There is another type of proteins which contain selenium inserted non-specifically by partly replacing sulphur in methionine and, potentially, cysteine. They are of interest in nutrition science as source of bio-available selenium in natural and supplemented foods. The goal of this Ph.D. was the development of methodologies for the analysis of selenium-containing proteins on the entire proteome scale. A novel procedure was developed for their global detection in 2D electrophoretic gels par laser ablation inductively coupled plasma mass spectrometry (ICP MS) imaging permitting to avoid the use of the radioactive 75Se. The other developments included (i) a robust capillary HPLC – ICP MS coupling allowing the detection of Se-containing peptides in microliter volumes of the digests of proteins extracted from the gel and (ii) protocols allowing the targeted identification of the Se-containing proteins by a parallel capillary HPLC - electrospray Orbitrap MS/MS. The methods developed allowed (i) the characterisation of the selenocystein-containing part of the selenoproteome of Se-enriched yeast, (ii) identification of the major Se-accumulating proteins in wheat, and (iii) semiquatitive analysis and global identification of the selenoproteomes (GPx1, GPx4, TRxR1, TRxR2, Sel15kDa) expressed in different human cell lines.

Page generated in 0.0767 seconds