• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude de la résistance de Cupriavidus metallidurans CH34 aux oxyanions sélénite et séléniate : accumulation, localisation et transformation du sélénium.

Avoscan, Laure 07 June 2007 (has links) (PDF)
Le sélénium est un élément trace essentiel pour les organismes vivants mais à forte concentration, il est très toxique. Les oxyanions sélénite et séléniate sont les formes les plus toxiques et prédominantes dans l'environnement. Certains micro-organismes jouent un rôle prépondérant en contribuant au cycle naturel du sélénium. Notre modèle d'étude Cupriavidus (anciennement Ralstonia) metallidurans CH34, bactérie tellurique issue de biotopes contaminés en métaux, est connu pour résister au sélénite (forme soluble du sélénium, très toxique et bio-assimilable) en le réduisant en sélénium élémentaire (forme précipitée insoluble et peu toxique). Afin de mieux comprendre les mécanismes de réduction du sélénium par les bactéries, trois méthodes de spéciation ont été combinées (SAX (XANES et EXAFS), HPLC-ICP-MS et SDS-PAGE-PIXE) et normalisées par la quantification du sélénium accumulé dans les bactéries. Les analyses de spéciation ont mis en évidence l'existence de deux voies de réduction du sélénium chez C. metallidurans CH34 : une voie d'assimilation transforme le sélénite et le séléniate en sélénium organique, identifié comme de la sélénométhionine et conduit à son incorporation dans des protéines bactériennes. L'espèce organique sélénométhionine semble être incorporée dans les protéines de façon non spécifique (présence de protéines séléniées). Une voie de détoxication précipite le sélénite en nanoparticules de sélénium élémentaire. Cette voie de détoxication ne se met pas en place après une exposition au séléniate malgré sa présence comme espèce minoritaire par rapport à l'exposition sélénite. Du sélénodiglutathion est détecté dans des bactéries stressées par une exposition au séléniate en milieu limité en sulfate. Les bactéries exposées à du sélénite accumulent 25 fois plus de sélénium que lorsqu'elles sont exposées à du séléniate. L'étude de mutants résistants au sélénite, n'exprimant pas la protéine membranaire DedA, a montré que l'accumulation du sélénium après exposition au sélénite est diminuée comparé à la souche sauvage signifiant un probable lien entre la prise en charge du sélénite et la protéine DedA. Enfin, le séléniate semble emprunter la sulfate perméase de C. metallidurans CH34.
2

Contributions à l'étude de la détoxication de la levure par les transporteurs ABC: 1 - étude biochimique de Yor1p; 2 - rôle des thiols dans la toxicité du sélénium.

Grigoras, Ioana 29 November 2005 (has links) (PDF)
Les transporteurs ABC forment une vaste famille de protéines présentes dans tous les organismes vivants. Ces protéines utilisent l'énergie fournie par l'hydrolyse de l'ATP pour transporter à travers les membranes biologiques des substances très variées. Plusieurs protéines ABC sont importantes pour la santé humaine. Par exemple, le défaut fonctionnel de la protéine CFTR cause la mucoviscidose et la surproduction de protéine MRP1 est associée aux phénomènes de résistance aux traitements anti-tumoraux. La levure Saccharomyces cerevisiae possède une famille de protéines (Yor1p, Ycf1p, Bpt1p, Ybt1p, Vmr1p, Nft1p) apparentées à CFTR et MRP1. Cette famille peut servir de modèle à l'étude des protéines humaines. La première partie de ce travail de thèse a été consacrée à l'étude biochimique de la protéine de levure Yor1p. Nous avons fusionné YOR1 avec un fragment d'ADN codant un peptide de poly-histidine et avons placé cette construction sous contrôle d'un promoteur permettant une surproduction dans la levure. Nous avons alors montré que la protéine Yor1p poly-histidylée était produite sous forme fonctionnelle dans la levure, puis avons mis au point une méthode permettant de solubiliser puis de purifier cette protéine en une seule étape par chromatographie d'affinité sur une colonne greffée avec des ions métalliques. La deuxième partie de ce travail a consisté à produire sous forme isolée chez la bactérie Escherichia coli et à purifier à homogénéité les deux domaines de Yor1p impliqués dans la liaison et l'hydrolyse de l'ATP. Nous avons étudié la fixation de l'ATP sur ces deux domaines, ce qui nous a permis de conclure que ces domaines étaient bien structurés. Ils peuvent maintenant être utilisés pour des études structurales. Enfin, nous nous sommes intéressés au rôle la protéine Ycf1p dans la détoxication du sélénite. Nous avons observé que la toxicité du sélénite pour la levure était considérablement accrue par la présence de composés thiolés dans le milieu de culture. La formation de dérivés réactifs de l'oxygène est vraisemblablement à l'origine de cette hypertoxicité.
3

APPROCHE COUPLÉE CHIMIQUE, SPECTROSCOPIQUE ET DE MODÉLISATION AB INITIO À LA RÉACTIVITÉ DE SURFACE : APPLICATION À LA RÉTENTION DES ANIONS PAR LA SIDÉRITE

Badaut, Vivien 05 July 2010 (has links) (PDF)
Parmi les radionucléides présents dans les stockages de déchets nucléaires de haute activité et à vie longue en couche géologique profonde, le 79Se a été mis en évidence comme pouvant poser un problème de sûreté. Le 79Se pourrait cependant être immobilisé par la sidérite (FeCO3) présente dans l'environnement proche du colis de déchets. Ce travail est une étude de la réaction chimique se produisant entre les oxyanions du sélénium (sélénite et sélénate) et la sidérite. Dans ce but, une double approche expérimentale (chimie des solutions, Spectroscopie d'Absorption des rayons X, XAS) et théorique (modélisation ab initio dans le cadre de la Théorie de la Fonctionnelle de la Densité, DFT) a été mise en œuvre. Des expériences en boîte à gants réductrice (5 % H2) de rétention des ions sélénite (SeIVO32-) et sélénate (SeVIO42-) (! 10-3 M) par des suspensions de sidérite (75 g/L) à pH neutre montrent que les ions sélénite sont quantitativement immobilisés par la sidérite en 48 h de réaction, contrairement aux ions sélénate qui ne sont que partiellement immobilisés après 10 jours de réaction. Dans le cas du sélénite, la XAS montre que le sélénium immobilisé est initialement présent sous forme de Se(IV) vraisemblablement adsorbé sur la surface de la sidérite. Après 10 jours de réaction, les ions sélénite sont quantitativement réduits sous forme de sélénium élémentaire trigonal relativement désorganisé. Les cinétiques de rétention et de réduction des ions sélénite par la sidérite sont donc distinctes. Sur la période de temps des expériences, les ions sélénate immobilisés par la sidérite ne semblent pas être réduits par la sidérite. Afin de mieux comprendre le mécanisme de réduction des ions sélénite, nous avons étudié les propriétés du solide et d'une surface parfaite de sidérite en DFT. Nous avons notamment proposé que, dans ce cadre théorique, une description correcte des électrons de valence de la sidérite ne peut être obtenue qu'à condition d'admettre que la symétrie de la densité électronique de l'état fondamental est incompatible avec la symétrie cristallographique expérimentale. Nous montrons par la suite que la modélisation de la rétention de molécules simples comme O2 et H2O sur la surface parfaite (10-14) de sidérite et de magnésite (MgCO3 ; plan de clivage parfait et d'énergie minimale d'après la DFT) est en bon accord avec les données de la littérature. Enfin, nous étudions la formation de complexes de surface du sélénite sur la magnésite avec et sans prise en compte de l'hydratation. L'ensemble de ces résultats confirme que le sélénium relâché sous forme de sélénite devrait être immobilisé de manière quantitative par la sidérite, et ne devrait pas contribuer au débit de dose à l'exutoire. Ce n'est pas le cas du sélénate, qui n'est que peu immobilisé et pas réduit par la sidérite.

Page generated in 0.0189 seconds