• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 12
  • 3
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 69
  • 29
  • 22
  • 16
  • 15
  • 15
  • 13
  • 13
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Caracterização bioquímica da Beta-Xilosidase II de Caulobacter crescentus visando a degradação da biomassa lignocelulósica para aplicações biotecnológicas / Biochemical characterization of beta-xylosidase ii from caulobacter crescentus concentrates on lignocellulosic biomass degradation for biotechnological applications

Silva, Amanda Alves 07 December 2015 (has links)
Made available in DSpace on 2017-07-10T13:59:26Z (GMT). No. of bitstreams: 1 DISSERTACAO AMANDA ALVES MESTRADO EM CIENCIAS FARMACEUTICAS _UNIOESTE 2015.pdf: 10598736 bytes, checksum: 51f0f3eb83858fee62392b7892930766 (MD5) Previous issue date: 2015-12-07 / SIM(não especificado) / Lignocellulosic biomass are the raw material most abundant and promising as a natural and renewable resource. These plant materials are complex carbohydrate polymer composed mainly of cellulose, hemicellulose and lignin, which are linked by covalent bonds and can be transformed into value-added products, such as biofuels. The degradation of lignocellulosic material is made mainly from enzymes produced by microorganisms such as filamentous fungi, yeast and bacteria. Ethanol production from agricultural residues, based on the enzymatic hydrolysis, it takes basically four stages: production of enzymes, pretreatment, enzymatic hydrolysis and fermentation. Pretreatment is a work that will break the lignin cellulose complex, reducing the degree of crystallinity of the cellulose and increase the porosity of the material, by increasing the surface area of the biomass. However, pre-treatment products can generate inhibitors which include phenolic and other aromatic, aliphatic acids, aldehydes, furans, inorganic ions. The fermentation and simultaneous saccharification is an important approach for producing cellulosic or ethanol of second generation, where the enzymatic hydrolysis of cellulose and fermentation are simultaneously carried out in the same reactor, in order to obtain ethanol at a high rate and decrease formation of inhibitor compounds. Enzymatic hydrolysis requires, first, that the lignocellulosic biomass is pretreated to increase access to enzymatic attack, so that later the cellulose is broken down by cellulase action. Xylanases include the group of enzymes responsible for the hydrolysis of xylan, the major constituent of hemicellulose. The key enzymes involved in this process are β-1,4-endoxylanase and β-D-xylosidase. Endoxylanase cleave glycosidic linkages of the main chain of xylan releasing xylo-oligosaccharides, which are used by β-xylosidase to produce monomers of xylose. The alfaproteobacteria Caulobacter crescentus is non pathogenic, Gram negative, mainly found in aquatic environments and on many types of soils. This bacterium has about seven genes directly associated with xylan degradation and five of them encoding β-xylosidases. To date, there are only three studies on the β-xylosidase II from C. crescentus. The first characterization of this enzyme showed that it is capable of hydrolyzing substrates such as xylobiose, xylotriose and xilopentose whose optimum pH is 6 and optimum temperature is 55°C, although it is stable at 50°C, which shows a thermotolerance, indicating strong enough to be used in different biotechnological applications. The stability and reusability of enzymes are of fundamental importance, since they reflect significantly on the cost of the final product, and one way to achieve this is with the immobilization of enzymes, consisting of confinement thereof in a matrix or support, which can be inert polymers or inorganic materials, so that its catalytic activity is retained and the enzyme can be used repeatedly and continuously. In the present report, it was found that the β-xylosidase II (CcXynB2) of Caulobacter crescentus increased by 62% of its activity in 5 mM KCl probably as a consequence of a positive role of K+ ions. CCxynB2 was measured against various compounds described as inhibitors of hydrolysis and fermentation of lignocellulosic biomass and showed 61% more tolerant incubation with ethanol (200 mM) at 37 °C for 48 h in the absence of alcohol. The specific activities of CcXynB2 were evaluated in the presence of 10mM phenol or galacturonic acid, 100 mM hydroxymethylfurfural or ferulic acid, 1 mM acetic acid, 200 mM arabinose, glucose or xylose and it was found that were equal (100%) or much higher than the values obtained in the total absence of these compounds after 48 h. When the inhibitors were used in combination, the CcXynB2 retained 67% of its initial activity after testing at 37°C during 48 h. The enzymatic hydrolysis of hemicellulose from corncob was conducted with CcXynB2 alone or in synergism with xylanase and commercial β-glycosidase, which were more efficient in performed the saccharification of hemicellulose from 37-50 °C. The immobilized CcXynB2 in mobile phase resin led to a protective effect of specific activity, which was proportionally parallel to decreased temperatures (60 to -20°C). The data presented here indicate that CcXynB2 is promising and has potential to work in simultaneous saccharification and fermentation processes for cellulosic ethanol production. To our knowledge, is the first time that similar results are reported in the literature to bacterial β-xylosidases. Thus, this work contribute positively by providing essential information to improve the use of β-xylosidase II of Caulobacter crescentus. / Biomassas lignocelulósicas constituem a matéria-prima mais abundante e promissora como recurso natural e renovável. Esses materiais vegetais são polímeros de carboidratos complexos compostos basicamente por celulose, hemicelulose e lignina, que estão unidos entre si por ligações covalentes e podem ser convertidos em produtos de valor agregado, como os biocombustíveis. A degradação dos materiais lignocelulósicos é feita a partir de enzimas produzidas principalmente por micro-organismos como fungos filamentosos, leveduras e bactérias. Para obter etanol a partir de resíduos agroindustriais, baseando-se na hidrólise enzimática, são necessárias, basicamente, quatro etapas: produção de enzimas, pré-tratamento, hidrólise enzimática e fermentação. O pré-tratamento é o processo que irá dissociar o complexo lignina-celulose, reduzir o grau de cristalinidade da celulose e aumentar a porosidade dos materiais, através do aumento da área superficial da biomassa. No entanto, o pré-tratamento pode gerar produtos inibidores, que incluem compostos fenólicos e outros aromáticos, ácidos alifáticos, aldeídos, furanos, íons inorgânicos. A fermentação e sacarificação simultânea é uma estratégia importante para a produção de etanol celulósico ou de segunda geração, onde a hidrólise enzimática da celulose e a fermentação são desenvolvidas simultaneamente no mesmo reator, com o intuito de obter etanol em altas taxas e diminuir a formação de compostos inibidores. A hidrólise enzimática necessita, primeiramente, que a biomassa lignocelulósica seja pré-tratada para aumentar o acesso ao ataque enzimático, para que posteriormente a celulose seja quebrada pela ação de celulases. As xilanases compreendem o grupo de enzimas responsáveis pela hidrólise do xilano, principal constituinte da hemicelulose. As principais enzimas envolvidas nesse processo são β-1,4-endoxilanase e a β-D-xilosidase. Endoxilanases clivam as ligações glicosídicas da cadeia principal do xilano liberando xilo-oligossacarídeos, que são utilizados pelas β-xilosidases para liberar xilose. A alfaproteobactéria Caulobacter crescentus é não patogênica, Gram negativa, encontrada principalmente em ambientes aquáticos e em muitos tipos de solos. Essa bactéria apresenta cerca de sete genes envolvidos diretamente na degradação do xilano, sendo que cinco deles codificam para β-xilosidases. Até o momento, existem apenas três trabalhos sobre a β-xilosidase II de C. crescentus. A primeira caracterização da enzima mostrou que esta é capaz de hidrolisar substratos como xilobiose, xilotriose e xilopentose, cujo pH ótimo é 6 e temperatura ótima é 55ºC, embora seja mais estável em 50ºC, o que demonstra uma modesta termotolerância, indicando ser suficientemente resistente para diferentes aplicações biotecnológicas. A estabilidade e a possibilidade de reutilização de enzimas são de fundamental importância, pois refletem significativamente no custo do produto final, e uma forma de conseguir isso é com a imobilização de enzimas, que consiste no confinamento da mesma em uma matriz ou suporte, que podem ser polímeros inertes ou materiais inorgânicos, de modo que sua atividade catalítica fique retida e a enzima possa ser usada repetidamente e continuamente. No presente trabalho, verificou-se que a β-xilosidase II (CcXynB2) de Caulobacter crescentus aumentou 62% da sua atividade em 5 mM de KCl provavelmente em consequência de um papel positivo dos íons K+. CcXynB2 foi avaliada frente a diferentes compostos descritos como inibidores do processo de hidrólise e fermentação da biomassa lignocelulósica e mostrou-se 61% mais tolerante a incubação com etanol (200 mM) a atividades específicas da CcXynB2 foram avaliadas na presença de 10 mM fenol ou ácido galacturônico, 100 mM de hidroximetilfurfural ou ácido ferúlico, 1 mM de ácido acético, 200 mM de arabinose, glicose ou xilose, e verificou-se que foram iguais (100%) ou muito superiores aos valores obtidos na ausência total destes compostos após 48 h. Quando os inibidores foram usados em associação, a CcXynB2 reteve 67% da sua atividade inicial após 48 h de ensaio a 37ºC. A hidrólise enzimática da hemicelulose de sabugo de milho foi conduzida com CcXynB2 isoladamente ou em sinergismo com xilanase e β-glicosidase comerciais, as quais foram mais eficientes em sacarificar a hemicelulose entre 37-50ºC. A imobilização da CcXynB2 em resina de fase móvel levou a um efeito protetor da atividade específica, que ocorreu de forma paralela à diminuição de temperatura (60 a -20ºC). Os dados apresentados aqui indicam que a CcXynB2 é promissora e possui potencial para atuar em processos de sacarificação e fermentação simultânea para produção de etanol celulósico. Segundo nosso conhecimento, é a primeira vez que resultados similares são relatados na literatura para β-xilosidases bacterianas. Dessa forma, este trabalho pode contribuir positivamente, fornecendo informações fundamentais para aprimorar o uso da β-xilosidase II de Caulobacter crescentus
12

Evaluation of different agricultural biomass for bioethanol production

Bansal, Sunil January 1900 (has links)
Master of Science / Department of Grain Science and Industry / Praveen V. Vadlani / In our study, five different bioenergy crops: wheat straw (Triticum aestivum), forage sorghum stover (sorghum bicolor), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus) and sweet sorghum baggase (Sorghum bicolor) were evaluated for bio-ethanol production at 20% (w/v) initial substrate concentration under separate hydrolysis and fermentation (SHF) process. The substrates were ground to pass through 600µm mesh size and treated with 2% (w/v) NaOH at 121oC for 30 minutes. The washed and neutralized pretreated residues were subjected to saccharification using cellulase and β-glucosidase enzymes (ratio 1:1.25) at concentrations of 25 filter paper unit (fpu)/g and 31.25fpu/g, respectively, in pH 5.0 citrate buffer in an orbital incubator shaker at 150 rpm for 72 h. The hydrolysate obtained was centrifuged and supernatant was collected for fermentation. Fermentation was performed in shake flasks using Saccharomyces cerevisiae at 10% (w/v) inoculum concentration at 100 rpm for 24 h. Alkali treatment was effective in delignification of all the biomass feedstocks. The highest percent removal on raw biomass basis was attained for sorghum stover BMR-DP (81.3%, w/w) followed by miscanthus (79.9%, w/w), sorghum stover BMR-RL (69.2 %, w/w), wheat straw (68.0 %, w/w), switchgrass (66.0%, w/w), and sorghum baggase (65.4%, w/w). Glucan saccharification varied from 56.4-72.6 % (w/w) corresponding to a glucose levels of 0.45-0.34 g/g of dry substrate. Highest saccharification was observed for wheat straw while lowest was observed for miscanthus after 48 hours of hydrolysis. A maximum final ethanol concentration of 4.3% (w/v) was observed for wheat straw followed by sorghum baggase (4.2%), sorghum RL-BMR (3.6%), miscanthus (3.4%), sorghum DP-BMR (3.4%), and switchgrass (3.2%). From our studies, it is evident that high substrate concentration used for enzymatic hydrolysis was able to provide high final ethanol concentration. The lignin content and its arrangement in different biomass feedstocks may have affected saccharification and subsequent ethanol production. Bulk density and flowability are the two major key parameters that should be addressed to reduce processing cost of biomass for bioethanol production. Pelleting of biomass can increase the bulk density, thereby reducing the handling and transportation costs. In addition to above study, I analyzed the changes in chemical composition due to pelletization and pretreatment, and its effect on ethanol production by comparing unpelleted and pelleted biomass ethanol production efficiency. Wheat straw and big bluestem pelleted and unpelleted biomass were compared for their ethanol production efficiency. Pelleted and unpelleted wheat straw (Triticum aestivum) and bigblue stem (Andropogon gerardii Vitman) at a substrate concentration of 10% (w/v) were subjected to 2% NaOH treatment at 1210C for 30 min and the resulting residues were analyzed for changes in chemical composition. Saccharification of residue was done at substrate concentration of 12% (w/v) for 48 h. The sugars obtained were fermented to ethanol using Saccharomyces cerevisiae. Pelletization did not significantly affect the chemical composition of biomass in terms of glucan, xylan and lignin content. Delignification of pelleted biomass was greater than unpelleted biomass. Pelletization did not influence final ethanol production for both substrates.
13

Increasing cellulosic biomass in sugarcane

Ndimande, Sandile 04 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Increased demand of petroleum, declining fossil fuel reserves, geopolitical instability and the environmentally detrimental effects of fossil fuels have stimulated research to search for alternative sources of energy such as plant derived biofuels. The main feedstocks for production of first generation biofuels (bioethanol) are currently sucrose and starch, produced by crops such as sugarcane, sugarbeet, maize, and cassava. The use of food crop carbohydrates to produce biofuels is viewed as competing for limited agronomic resources and jeopardizing food security. Plants are also capable of storing sugars in their cell walls in the form of polysaccharides such as cellulose, hemicelluloses and pectin, however those are usually cross-linked with lignin, making their fermentation problematic, and are consequently referred to as lignocellulosics. Current technologies are not sufficient to degrade these cell wall sugars without large energy inputs, therefore making lignocellulosic biomass commercially unviable as a source of sugars for biofuel production. In the present study genes encoding for enzymes for cellulosic, hemicellulosic and starch-like polysaccharides biosynthesis were heterologously expressed to increase the amount of fermentable sugars in sugarcane. Transgenic lines heterologously expressing CsCesA, encoding a cellulose synthase from the marine invertebrate Ciona savignyi showed significant increases in their total cellulose synthase enzyme activity as well as the total cellulose content in internodal tissues. Elevation in cellulose contents was accompanied by a rise in hemicellulosic glucose content and uronic acid amounts, while total lignin was reduced in internodal tissues. Enzymatic saccharification of untreated lignocellulosic biomass of transgenic sugarcane lines had improved glucose release when exposed to cellulose hydrolyzing enzymes. Calli derived from transgenic sugarcane lines ectopically expressing galactomannan biosynthetic sequences ManS and GMGT from the cluster bean (Cyamopsis tetragonoloba) were observed to be capable of producing a galactomannan polysaccharide. However, after regeneration, transgenic sugarcane plants derived from those calli were unable to produce the polymer although the inserted genes were transcribed at the mRNA level. While the ectopic expression of Deinococcus radiodurans amylosucrase protein in the cytosol had a detrimental effect on the growth of transgenic lines (plants showed stunted growth through the 18 months growth period in greenhouse), contrastingly targeting the amylosucrase protein into the vacuole resulted in 3 months old transgenic lines which were having high maltooligosaccharide and soluble sugar (sucrose, glucose and fructose) levels in leaves. After 18 months growing in the greenhouse, the mature transgenic lines were morphologically similar to the untransformed lines and also contained comparable maltooligosaccharide and soluble sugar and starch amounts. The non-biosynthesis of galactomannan and amylose polysaccharides in the matured transgenic plants may be due to post-transcriptional protein processing and or protein instability, possibly explainable by other epigenetic mechanisms taking place to regulate gene expression in the at least allo-octaploid species of sugarcane under investigation in this study.
14

MOLECULAR AND CHEMICAL DISSECTION OF CELLULOSE BIOSYNTHESIS IN PLANTS

Harris, Darby M. 01 January 2011 (has links)
Plant cell walls are complex structures that must not only constrain cellular turgor pressure but also allow for structural modification during the dynamic processes of cell division and anisotropic expansion. Cell walls are composed of highly glycosylated proteins and polysaccharides, including pectin, hemicellulose and cellulose. The primary cell wall polysaccharide is cellulose, a polymer composed of high molecular weight !- 1,4-glucan chains. Although cellulose is the most abundant biopolymer on Earth, there is still a lot to learn about its biosynthesis and regulation. This research began by applying a variety of analytical techniques in an attempt to understand differences in cell wall composition and cellulose structure within the plant body, between different plant species and as a result of acclimation by the plant to different environmental conditions. Next, a number of different Arabidopsis thaliana lines possessing mutations affecting cell wall biosynthesis were analyzed for changes in cellulose structure (crystallinity) and biomass saccharification efficiency. One of these mutants, isoxaben resistance1-2 (ixr1- 2), which contains a point mutation in the C-terminal transmembrane region (TMR) of cellulose synthase 3 (CESA3), exhibited a 34% lower biomass crystallinity index and a 151% improvement in saccharification efficiency relative to that of wild-type. The culmination of this research began with a chemical screen that identified the molecule quinoxyphen as a primary cell wall cellulose biosynthesis inhibitor. By forward genetics, a semi-dominant mutant showing strong resistance to quinoxyphen named aegeus was identified in A. thaliana and the resistance locus mapped to a point mutation in the TMR of CESA1. cesa1aegeus occurs in a similar location to that of cesa3ixr1-2, illustrating both subunit specificity and commonality of resistance locus. These drug resistant CESA TMR mutants are dwarfed and have aberrant cellulose deposition. High-resolution synchrotron X-ray diffraction and 13C solid-state nuclear magnetic resonance spectroscopy analysis of cellulose produced from cesa1aegeus, cesa3ixr1-2 and the double mutant shows a reduction in cellulose microfibril width and an increase in mobility of the interior glucan chains of the cellulose microfibril relative to wild-type. These data demonstrate the importance of the TMR region of CESA1 and CESA3 for the arrangement of glucan chains into a crystalline cellulose microfibril in primary cell walls.
15

Sacarificação da polpa celulósica do bagaço de cana-de-açúcar com celulases e xilanases de Thermoascus aurantiacus / Saccharification of sugarcane bagasse cellulosic pulp by cellulases and xylanases of Thermoascus aurantiacus

Joseana Rocha do Monte 21 August 2009 (has links)
A proposta desse trabalho foi estudar o perfil de produção de enzimas hidrolíticas pelo fungo termófilo Thermoascus aurantiacus ATCC 204492 quando cultivado em resíduos agroindustriais e utilizá-las nas formas bruta ou purificada na hidrólise da polpa celulósica do bagaço de cana-de-açúcar. Para tanto, estudou-se a cinética de produção de xilanases e celulases em fermentação sólida, utilizando quatro diferentes tipos de resíduos agrícolas: bagaço e palha de cana-de-açúcar, palha de trigo e sabugo de milho. Os extratos obtidos foram investigados quanto ao teor de xilanase, endoglucanase, exoglucanase, β-glicosidase e β-xilosidase. A palha de cana-de-açúcar induziu as maiores atividades de xilanase em 9 dias (1679,8 UI/g) e de β-glicosidase em 6 dias (29,9 UI/g). Em sabugo de milho, o fungo produziu 46,0 UI/g de exoglucanase e 5,2 UI/g de β-xilosidase, em 17 dias. A maior produção de endoglucanase ocorreu em bagaço de cana-de-açúcar em 9 dias (108,9 UI/g). A carga inicial de inóculo foi avaliada para o meio preparado com bagaço e verificou-se que o aumento de 104 vezes no número de ascósporos influenciou somente a produção de exoglucanase, que teve sua atividade aumentada em 10 vezes. Após a determinação das atividades enzimáticas, o extrato de sabugo de milho foi aplicado em uma coluna trocadora de ânions, DEAE Sepharose CL6B, equilibrada em pH 3,5 e 6,0; a fim de se obter as enzimas em sua forma purificada. Pôde-se isolar uma xilanase, uma endoglucanase e uma β-glicosidase de massas molares 31,5 kDa, 32,4 kDa e 76,6 kDa, respectivamente. Os extratos enzimáticos do T. aurantiacus foram aplicados no bagaço de cana-de-açúcar in natura e na polpa celulósica do bagaço, obtendo 15 % de conversão enzimática da celulose (CEC), para ambos os substratos. Sendo assim, a polpa do bagaço de cana-de-açúcar foi pré-tratada com (1) proteases isoladas do abacaxi; (2) xilanase purificada de T. aurantiacus ou (3) ácido sulfúrico diluído. Em seguida foi feita a hidrólise do material pré-tratado com o extrato bruto de T. aurantiacus. O pré-tratamento com protease não teve efeito hidrolítico na polpa de bagaço, porém aumentou a CEC com as enzimas de T. aurantiacus de 9,4 % para 20,7 %. O pré-tratamento com a xilanase pura também não liberou açúcares redutores, contudo foi capaz de aumentar a CEC da polpa de bagaço para 30,0 %. O pré-tratamento com ácido diluído foi capaz de remover até 50 % da hemicelulose presente na polpa do bagaço, porém a remoção deste polissacarídeo não aumentou a CEC do bagaço com as enzimas de T. aurantiacus, mantendo o mesmo valor de CEC (15 %). / The purpose of this work was to study the production profile of hydrolytic enzymes of the thermophilic fungus Thermoascus aurantiacus ATCC 204492 when cultivated in agroindustrial residues and to use them in the forms crude or purified for the hydrolysis of the cellulosic pulp of the sugarcane bagasse. For so much, it was studied the kinetics of xylanases and cellulases production on solid fermentation, using four different types of agricultural residues: sugarcane bagasse, sugarcane straw, wheat straw and corn cob. The extracts obtained were investigated for xylanase, endoglucanase, exoglucanase, β-glucosidase and β-xylosidase activities. Sugarcane straw induced the highest level of xylanase at 9 days (1679.8 UI/g) and β-glicosidase (29.9 UI/g) at 6 days. With corn cob, the fungus produced 46.0 UI/g of exoglucanase and 5.2 UI/g of β-xylosidase at 17 days. The highest endoglucanase production occurred on sugarcane pulp (108.9 UI/g) at 9 days. The initial load of inocullum was evaluated for sugarcane bagasse medium and it was verified that the 10000 times increase of ascospores had influence only in the exoglucanase production, showing a 10 fold increase of its activity. The corn cob extracts were applied in an ion exchange column, DEAE Sepharose CL6B, in order to purify cellulases and hemicellulases presents in the extracts. It could be isolated a xylanase, an endoglucanase and a β-glucosidase of 31.5 kDa, 32.4 kDa and 76.3 kDa, respectively. The enzymatic extracts of T. aurantiacus were tested on sugarcane bagasse in natura and on sugarcane bagasse pulp and 15 % of enzymatic conversion of the cellulose (CEC) was obtained from both substrates. A pretreatment of sugarcane bagasse pulp with (1) proteases isolated from pineapple; (2) xylanase purified of T. aurantiacus and (3) diluted sulfuric acid was performed. The pretreatment with protease did not present any hydrolytic effect on the sugarcane bagasse pulp, however it increased the final CEC with the enzymes of T. aurantiacus from 9.4 % to 20.7 %. The pretreatment with pure xylanase did not release sugars from pulp bagasse, however it was capable to increase the yield of the enzymatic hydrolysis of the pulp to 30.0 %. The pretreatment with diluted acid was capable to remove up to 50 % of the hemicellulose from the pulp, but CEC was maintained on 15 %.
16

Produção e caracterização da xilanase de Bacillus pumilus e potencial uso na extração de xilana do bagaço de cana-de-açúcar pré-tratado / Production and characterization of Bacillus pumilus xylanase and potential use in the extraction of xylan from pre-treated sugarcane bagasse

Santos, Maiara Paparele dos 20 October 2017 (has links)
O presente trabalho teve como objetivo a caracterização da xilanase presente no extrato bruto de Bacillus pumilus, com a finalidade de usá-la na extração de xilana do bagaço de cana-de-açúcar. Foram testados dois meios de cultura em pHs 8,5 e 9,5 com diferentes substratos. As maiores atividades de xilanase foram produzidas em xilana comercial de oat spelts (228 U/mL) e em farelo de trigo (220 U/mL), no pH 8,5. Independentemente das condições de cultivo empregada, não foi detectada atividades de &szlig;-xilosidase, &szlig;-glicosidase e arabinofuranosidase e a produção de endoglucanase foi baixa (< 0,7 U/mL). O perfil de proteínas em eletroforese foi amplo, e a banda com 23 kDa correspondeu a uma xilanase. A xilanase apresentou pH ótimo na faixa de 7-8, temperatura ótima entre 45-50 ºC e se apresentou mais estável a 40 ºC (pH8,0). A hidrólise de xilanas comerciais produziu xilotriose, xilotetraose, xilopentaose e xilo-oligossacarídeos (XOS) com massas maiores, que não foram identificados por cromatografia em camada fina (TLC). A influência de vários fatores, tais como a carga de xilanase, tipo de substrato, temperatura e a adição de vários compostos foi avaliada no rendimento de extração de xilanas desde o bagaço de cana-de-açúcar prétratado. O extrato bruto de B. pumilus, rico em xilanases, foi aplicado em um bagaço pré-tratado com sulfito/álcali, e em um bagaço deslignificado por clorito em meio ácido, evidenciando que a menor quantidade de lignina residual como principal fator para aumentar a extração de xilana, aumentando a extração de 4,2 para 42,5%. A lavagem extensiva do material pré-tratado com sulfito alcalino também auxiliou no aumento do rendimento de xilana, de 18,5 para 25,1 %. Foram testadas outras alternativas para aumentar o rendimento de hidrólise da xilana do bagaço pré-tratado, sem a necessidade da lavagem do material. A reutilização do licor sulfito alcalino, a adição de tween 80, polietileno glicol, albumina não favoreceram a extração de xilanas, enquanto que a adição de MgSO4 teve um pequeno efeito positivo na extração da xilana (de 18% para 20,9 %). A extração alcalina a frio, realizada após a extração enzimática, influenciou positivamente o rendimento de extração da xilana do bagaço pré-tratado com 10% Na2SO3/5%NaOH. A extração de xilana obtido pela aplicação de xilanase (20 U/g) seguida da extração com 20% de NaOH produziu o mesmo resultado que utilizando apenas NaOH (70%), de 24,1 e 24,9 %, respectivamente. A extração enzimática da xilana permitiu a obtenção de um resíduo com características favoráveis para a completa sacarificação, com Cellic CTec2 na carga de 10 FPU/g de material. / The present work aimed to characterize the xylanase present in the crude extract of Bacillus pumilus, with the purpose of using it in the xylan extraction of the sugarcane bagasse. Two culture media were tested at pHs 8.5 and 9.5 with different substrates. The highest xylanase activities were produced in commercial xylan oat spelled (228 U / mL) and wheat bran (220 U / mL) at pH 8.5. Regardless of the culture conditions employed, &szlig;xylosidase, &szlig;-glycosidase and arabinofuranosidase activities were not detected and endoglucanase production was low (<0.7 U/mL). The protein profile on electrophoresis was extensive, and the 23 kDa band corresponded to a xylanase. The xylanase presented optimum pH in the range of 7-8, optimal temperature between 45-50ºC and was more stable at 40 ºC (pH8.0). Hydrolysis of commercial xylanes produced xylotriose, xylotetraose, xylopentaose and xylooligosaccharides (XOS) with larger masses, which were not identified by thin layer chromatography (TLC). The influence of various factors, such as xylanase loading, substrate type, temperature and the addition of various compounds was evaluated in the xylan extraction yield from the pretreated sugarcane bagasse. The crude extract of B. pumilus, rich in xylanases, was applied to a bagasse pretreated with sulfite/alkali, and to a bagasse delignified by chlorite in acid medium, showing that the lower amount of residual lignin as the main factor to increase the extracting xylan, increasing the extraction from 4.2 to 42.5%. Extensive washing of the alkaline sulfite pretreated material also assisted in increasing xylan yield, from 18.5 to 25.1%. Further alternatives were tested to increase the hydrolysis yield of pretreated bagasse xylan without the need for material washing. The reuse of the alkali sulfite liquor, the addition of tween 80, polyethylene glycol, albumin did not favor xylan extraction, while addition of MgSO4 had a small positive effect on xylan extraction (from 18% to 20.9%). The cold alkaline extraction, after enzymatic extraction, positively influenced the xylan extraction yield of the pretreated bagasse with 10% Na2SO3/5% NaOH. Extraction of xylan obtained by applying xylanase (20 U / g) followed by extraction with 20% NaOH produced the same result as using only NaOH (70%), 24.1 and 24.9%, respectively. The enzymatic extraction of xylan allowed to obtain a residue with favorable characteristics for the complete saccharification, with Cellic CTec2 in the load of 10 FPU / g of material.
17

Sacarificação da polpa celulósica do bagaço de cana-de-açúcar com celulases e xilanases de Thermoascus aurantiacus / Saccharification of sugarcane bagasse cellulosic pulp by cellulases and xylanases of Thermoascus aurantiacus

Monte, Joseana Rocha do 21 August 2009 (has links)
A proposta desse trabalho foi estudar o perfil de produção de enzimas hidrolíticas pelo fungo termófilo Thermoascus aurantiacus ATCC 204492 quando cultivado em resíduos agroindustriais e utilizá-las nas formas bruta ou purificada na hidrólise da polpa celulósica do bagaço de cana-de-açúcar. Para tanto, estudou-se a cinética de produção de xilanases e celulases em fermentação sólida, utilizando quatro diferentes tipos de resíduos agrícolas: bagaço e palha de cana-de-açúcar, palha de trigo e sabugo de milho. Os extratos obtidos foram investigados quanto ao teor de xilanase, endoglucanase, exoglucanase, &#946;-glicosidase e &#946;-xilosidase. A palha de cana-de-açúcar induziu as maiores atividades de xilanase em 9 dias (1679,8 UI/g) e de &#946;-glicosidase em 6 dias (29,9 UI/g). Em sabugo de milho, o fungo produziu 46,0 UI/g de exoglucanase e 5,2 UI/g de &#946;-xilosidase, em 17 dias. A maior produção de endoglucanase ocorreu em bagaço de cana-de-açúcar em 9 dias (108,9 UI/g). A carga inicial de inóculo foi avaliada para o meio preparado com bagaço e verificou-se que o aumento de 104 vezes no número de ascósporos influenciou somente a produção de exoglucanase, que teve sua atividade aumentada em 10 vezes. Após a determinação das atividades enzimáticas, o extrato de sabugo de milho foi aplicado em uma coluna trocadora de ânions, DEAE Sepharose CL6B, equilibrada em pH 3,5 e 6,0; a fim de se obter as enzimas em sua forma purificada. Pôde-se isolar uma xilanase, uma endoglucanase e uma &#946;-glicosidase de massas molares 31,5 kDa, 32,4 kDa e 76,6 kDa, respectivamente. Os extratos enzimáticos do T. aurantiacus foram aplicados no bagaço de cana-de-açúcar in natura e na polpa celulósica do bagaço, obtendo 15 % de conversão enzimática da celulose (CEC), para ambos os substratos. Sendo assim, a polpa do bagaço de cana-de-açúcar foi pré-tratada com (1) proteases isoladas do abacaxi; (2) xilanase purificada de T. aurantiacus ou (3) ácido sulfúrico diluído. Em seguida foi feita a hidrólise do material pré-tratado com o extrato bruto de T. aurantiacus. O pré-tratamento com protease não teve efeito hidrolítico na polpa de bagaço, porém aumentou a CEC com as enzimas de T. aurantiacus de 9,4 % para 20,7 %. O pré-tratamento com a xilanase pura também não liberou açúcares redutores, contudo foi capaz de aumentar a CEC da polpa de bagaço para 30,0 %. O pré-tratamento com ácido diluído foi capaz de remover até 50 % da hemicelulose presente na polpa do bagaço, porém a remoção deste polissacarídeo não aumentou a CEC do bagaço com as enzimas de T. aurantiacus, mantendo o mesmo valor de CEC (15 %). / The purpose of this work was to study the production profile of hydrolytic enzymes of the thermophilic fungus Thermoascus aurantiacus ATCC 204492 when cultivated in agroindustrial residues and to use them in the forms crude or purified for the hydrolysis of the cellulosic pulp of the sugarcane bagasse. For so much, it was studied the kinetics of xylanases and cellulases production on solid fermentation, using four different types of agricultural residues: sugarcane bagasse, sugarcane straw, wheat straw and corn cob. The extracts obtained were investigated for xylanase, endoglucanase, exoglucanase, &#946;-glucosidase and &#946;-xylosidase activities. Sugarcane straw induced the highest level of xylanase at 9 days (1679.8 UI/g) and &#946;-glicosidase (29.9 UI/g) at 6 days. With corn cob, the fungus produced 46.0 UI/g of exoglucanase and 5.2 UI/g of &#946;-xylosidase at 17 days. The highest endoglucanase production occurred on sugarcane pulp (108.9 UI/g) at 9 days. The initial load of inocullum was evaluated for sugarcane bagasse medium and it was verified that the 10000 times increase of ascospores had influence only in the exoglucanase production, showing a 10 fold increase of its activity. The corn cob extracts were applied in an ion exchange column, DEAE Sepharose CL6B, in order to purify cellulases and hemicellulases presents in the extracts. It could be isolated a xylanase, an endoglucanase and a &#946;-glucosidase of 31.5 kDa, 32.4 kDa and 76.3 kDa, respectively. The enzymatic extracts of T. aurantiacus were tested on sugarcane bagasse in natura and on sugarcane bagasse pulp and 15 % of enzymatic conversion of the cellulose (CEC) was obtained from both substrates. A pretreatment of sugarcane bagasse pulp with (1) proteases isolated from pineapple; (2) xylanase purified of T. aurantiacus and (3) diluted sulfuric acid was performed. The pretreatment with protease did not present any hydrolytic effect on the sugarcane bagasse pulp, however it increased the final CEC with the enzymes of T. aurantiacus from 9.4 % to 20.7 %. The pretreatment with pure xylanase did not release sugars from pulp bagasse, however it was capable to increase the yield of the enzymatic hydrolysis of the pulp to 30.0 %. The pretreatment with diluted acid was capable to remove up to 50 % of the hemicellulose from the pulp, but CEC was maintained on 15 %.
18

Seleção de uma linhagem termotolerante de Kluyveromyces marxianus produtora de etanol e sua aplicação no processo de sacarificação e fermentação simultânea da celulignina de palha de arroz / Selection of a thermotolerant ethanol producer Kluyveromyces marxianus strain and its application in the process of simultaneous saccharification and fermentation of rice straw cellulignin

Rafael Cunha de Assis Castro 25 January 2012 (has links)
O presente trabalho teve como principal objetivo selecionar uma linhagem termotolerante de Kluyveromyces marxianus e avaliar a sua aplicação em processos de produção de etanol a partir da celulignina de palha de arroz. Inicialmente, foram avaliadas oito diferentes linhagens de K. marxianus em meio semissintético contendo 50 g/L de glicose sob temperatura de 45 °C. De acordo com os principais parâmetros fermentativos obtidos, a linhagem K. marxianus NRRL Y-6860 foi selecionada e o efeito da oxigenação do meio sobre os parâmetros fermentativos desta levedura foi realizado de acordo com um planejamento experimental 22. Os resultados revelaram que a produção de etanol foi favorecida nas menores condições de agitação e aeração estudadas (100 rpm e relação Vfrasco/Vmeio de 2,5) sendo obtido um valor de conversão de glicose em etanol (YP/S) de 0,44 g/g e produtividade volumétrica em etanol (QP) de 3,63 g/L.h. Nestas condições, K. marxianus NRRL Y-6860 foi também capaz de fermentar elevada concentração de glicose (112 g/L), apresentando valores de YP/S = 0,42 g/g e QP = 3,24 g/L.h. Numa segunda etapa, ensaios de sacarificação da celulignina (8% m/v) permitiram definir a carga de Cellubrix (25 FPU/g) e Novozyme 188 (25 UI/g) as quais promoveram um rendimento de hidrólise de aproximadamente 50 % em 12 horas. A celulignina foi obtida após o pré-tratamento da palha de arroz com H2SO4 diluído e apresentou a seguinte composição (g/100g de matéria seca): celulose (54,9), hemicelulose (7,9), lignina (24,9) e cinzas (8,0). Para os ensaios de sacarificação e fermentação da celulignina com a levedura K. marxianus NRRL Y-6860 duas estratégias foram avaliadas: 1) sacarificação e fermentação em separado (SHF), com e sem inativação das enzimas e 2) sacarificação e fermentação simultânea (SSF) em que o inóculo e as enzimas foram adicionados no início do processo. Os resultados revelaram que na estratégia SHF a inativação das enzimas antes da inoculação não influenciou o desempenho fermentativo da levedura. Além disso, o emprego de um maior teor de celulignina (12 % m/v) proporcionou um ganho de 42 % na produtividade total do processo (QPT) em relação ao teor de 8 % (m/v), atingindo o valor de 0,97 g/L.h. O emprego da estratégia SSF a partir de 8 % (m/v) de celulignina permitiu um incremento de 177 % e 287 % nos valores de QPT quando comparados ao processo SHF com 12 e 8 % de celulignina (m/v), respectivamente. Ensaios de SSF com Saccharomyces cerevisiae mostraram que para ambas as temperaturas avaliadas (30 °C ou 45 °C) a termotolerante K. marxianus NRRL Y-6860 mostrou-se superior com relação a produtividade total do processo. Com os resultados do presente trabalho pode-se concluir que a levedura termotolerante K. marxianus NRRL Y-6860 é um micro-organismo em potencial para produção de etanol celulósico a partir da estratégia SSF devido aos elevados valores de produtividade volumétrica (QPT = 2,69 g/L.h) obtidos a partir da celulignina de palha de arroz. / This work aimed to select a thermotolerant strain of Kluyveromyces marxianus and evaluate its application on ethanol production by using rice straw cellulignin. Initially, were evaluated eight different strains of K. marxianus on semi-synthetic media containing 50 g/L of glucose at 45 °C. According to the main fermentation parameters, the strain K. marxianus NRRL Y-6860 was selected and the effect of oxygenation on ethanol production by this yeast was investigated through a 22 factorial design. The best results of ethanol yield factor (YP/S = 0.44 g/g) and ethanol volumetric productivity (QP = 3.63 g/L.h) were found at the lowest agitation and aeration conditions (100 rpm and 2.5 Vflask/Vmedium ratio) employed. Under this conditions, K. marxianus NRRL Y-6860 was also able to ferment at high glucose concentration (112 g/L), with values of YP/S = 0.42 g/g and QP = 3.24 g/L.h. In a second step, the effect of Cellubrix loading and its supplementation with Novozyme 188 on the cellulignin saccharification were evaluated. The results showed that the highest hydrolysis yield (50 %) was attained when a load of Cellubrix (25 FPU/g dry matter) and Novozyme 188 (25 IU/g dry matter) was used. The cellulignin obtained from dilute sulfuric acid pretreatment of rice straw showed the following composition (g/100g dry matter): cellulose (54.9), hemicellulose (7.9), lignin (24.9) and ash (8.0). For the studies of cellulignin saccharification and fermentation with K. marxianus NRRL Y-6860 two strategies were evaluated: 1) Separate Hydrolysis and Fermentation (SHF), with and without inactivation of enzymes, which inoculum was added after the hydrolysis step and 2) Simultaneous Saccharification and Fermentation (SSF), which inoculum and enzymes were added at the beginning of the process. The results revealed that the enzyme inactivation step prior to inoculation in SHF did not influence the yeast\'s fermentation performance. In addition, the use of a higher loading of cellulignin (12 % w/v) increased the overall ethanol productivity (QPT) in 42 %, reaching a value of 0.97 g/L.h as compared to the loading of 8 % (w/v). The SSF process from 8 % (w/v) of cellulignin increased the values of QPT in 177 % and 287 % when compared to SHF loading of 12 and 8 % (w/v), respectively. By using Saccharomyces cerevisiae in SSF process under different temperatures (30 °C or 45 °C) the overall ethanol productivity was lower in relation with the thermotolerant K. marxianus NRRL Y-6860. Based on the experimental results of this work, it can be concluded that K. marxianus NRRL Y-6860 herein selected represents a potential microorganism to application on ethanol production from lignocellulosic materials in SSF process due to its high fermentative potential at elevated temperatures.
19

Produção e caracterização da xilanase de Bacillus pumilus e potencial uso na extração de xilana do bagaço de cana-de-açúcar pré-tratado / Production and characterization of Bacillus pumilus xylanase and potential use in the extraction of xylan from pre-treated sugarcane bagasse

Maiara Paparele dos Santos 20 October 2017 (has links)
O presente trabalho teve como objetivo a caracterização da xilanase presente no extrato bruto de Bacillus pumilus, com a finalidade de usá-la na extração de xilana do bagaço de cana-de-açúcar. Foram testados dois meios de cultura em pHs 8,5 e 9,5 com diferentes substratos. As maiores atividades de xilanase foram produzidas em xilana comercial de oat spelts (228 U/mL) e em farelo de trigo (220 U/mL), no pH 8,5. Independentemente das condições de cultivo empregada, não foi detectada atividades de &szlig;-xilosidase, &szlig;-glicosidase e arabinofuranosidase e a produção de endoglucanase foi baixa (< 0,7 U/mL). O perfil de proteínas em eletroforese foi amplo, e a banda com 23 kDa correspondeu a uma xilanase. A xilanase apresentou pH ótimo na faixa de 7-8, temperatura ótima entre 45-50 ºC e se apresentou mais estável a 40 ºC (pH8,0). A hidrólise de xilanas comerciais produziu xilotriose, xilotetraose, xilopentaose e xilo-oligossacarídeos (XOS) com massas maiores, que não foram identificados por cromatografia em camada fina (TLC). A influência de vários fatores, tais como a carga de xilanase, tipo de substrato, temperatura e a adição de vários compostos foi avaliada no rendimento de extração de xilanas desde o bagaço de cana-de-açúcar prétratado. O extrato bruto de B. pumilus, rico em xilanases, foi aplicado em um bagaço pré-tratado com sulfito/álcali, e em um bagaço deslignificado por clorito em meio ácido, evidenciando que a menor quantidade de lignina residual como principal fator para aumentar a extração de xilana, aumentando a extração de 4,2 para 42,5%. A lavagem extensiva do material pré-tratado com sulfito alcalino também auxiliou no aumento do rendimento de xilana, de 18,5 para 25,1 %. Foram testadas outras alternativas para aumentar o rendimento de hidrólise da xilana do bagaço pré-tratado, sem a necessidade da lavagem do material. A reutilização do licor sulfito alcalino, a adição de tween 80, polietileno glicol, albumina não favoreceram a extração de xilanas, enquanto que a adição de MgSO4 teve um pequeno efeito positivo na extração da xilana (de 18% para 20,9 %). A extração alcalina a frio, realizada após a extração enzimática, influenciou positivamente o rendimento de extração da xilana do bagaço pré-tratado com 10% Na2SO3/5%NaOH. A extração de xilana obtido pela aplicação de xilanase (20 U/g) seguida da extração com 20% de NaOH produziu o mesmo resultado que utilizando apenas NaOH (70%), de 24,1 e 24,9 %, respectivamente. A extração enzimática da xilana permitiu a obtenção de um resíduo com características favoráveis para a completa sacarificação, com Cellic CTec2 na carga de 10 FPU/g de material. / The present work aimed to characterize the xylanase present in the crude extract of Bacillus pumilus, with the purpose of using it in the xylan extraction of the sugarcane bagasse. Two culture media were tested at pHs 8.5 and 9.5 with different substrates. The highest xylanase activities were produced in commercial xylan oat spelled (228 U / mL) and wheat bran (220 U / mL) at pH 8.5. Regardless of the culture conditions employed, &szlig;xylosidase, &szlig;-glycosidase and arabinofuranosidase activities were not detected and endoglucanase production was low (<0.7 U/mL). The protein profile on electrophoresis was extensive, and the 23 kDa band corresponded to a xylanase. The xylanase presented optimum pH in the range of 7-8, optimal temperature between 45-50ºC and was more stable at 40 ºC (pH8.0). Hydrolysis of commercial xylanes produced xylotriose, xylotetraose, xylopentaose and xylooligosaccharides (XOS) with larger masses, which were not identified by thin layer chromatography (TLC). The influence of various factors, such as xylanase loading, substrate type, temperature and the addition of various compounds was evaluated in the xylan extraction yield from the pretreated sugarcane bagasse. The crude extract of B. pumilus, rich in xylanases, was applied to a bagasse pretreated with sulfite/alkali, and to a bagasse delignified by chlorite in acid medium, showing that the lower amount of residual lignin as the main factor to increase the extracting xylan, increasing the extraction from 4.2 to 42.5%. Extensive washing of the alkaline sulfite pretreated material also assisted in increasing xylan yield, from 18.5 to 25.1%. Further alternatives were tested to increase the hydrolysis yield of pretreated bagasse xylan without the need for material washing. The reuse of the alkali sulfite liquor, the addition of tween 80, polyethylene glycol, albumin did not favor xylan extraction, while addition of MgSO4 had a small positive effect on xylan extraction (from 18% to 20.9%). The cold alkaline extraction, after enzymatic extraction, positively influenced the xylan extraction yield of the pretreated bagasse with 10% Na2SO3/5% NaOH. Extraction of xylan obtained by applying xylanase (20 U / g) followed by extraction with 20% NaOH produced the same result as using only NaOH (70%), 24.1 and 24.9%, respectively. The enzymatic extraction of xylan allowed to obtain a residue with favorable characteristics for the complete saccharification, with Cellic CTec2 in the load of 10 FPU / g of material.
20

Improving barley for biofuel production : efficient transformation for lignin manipulation

Maluk, Marta January 2014 (has links)
Cost effective production of biofuel from plant biomass (second generation biofuels) is currently a key challenge. To achieve this, accessibility of plant cell wall polysaccharides to chemical, enzymatic and microbial digestion could be improved by altering lignin structure and composition or by reducing lignin content, as lignin is one cell wall component that has already been shown to contribute to biomass recalcitrance. Therefore, this thesis reports the genetic manipulation of lignin biosynthesis through down-regulation of cinnamyl alcohol dehydrogenase (CAD) genes in barley (Hordeum vulgare L.). Barley has been chosen as the target plant for lignin manipulation for a few reasons: it is a major cereal crop that produces large amounts of lignocellulosic plant biomass that can potentially be used as animal feed or to produce second generation biofuels and also because it is a model grass for other bioenergy crops. CAD, as the final enzyme in the lignin pathway, is a perfect target for lignin manipulation. Characterised CAD mutants and transgenics have shown that down-regulation of CAD improves digestibility and does not influence plant growth and fertility. Due to the difficulty and complexity of transformation of monocot species, there are only a few reports describing down-regulation of CAD in monocots, and none in barley. Here, in this thesis, lignin was altered by down-regulating CAD genes using an RNAi construct with part of the HvCAD2 gene, the gene which has the highest expression level of all CAD genes. Transgenic barley plants showed reduced enzyme activity in the T0 generation (31% compared to EV plants) and enzyme activity was reduced even more in the T1 (to 3%) and T2 (to 2%) generations. The HvCAD2 RNAi barley lines had similar or slightly reduced Klason total lignin contents relative to control plants, but lignin structure and composition were altered. The RNAi plants had lower thioacidolysis yields, S/G ratio was reduced (1.59 in the empty vector controls versus 0.96–1.21 in the transgenic barley plants), the relative frequency of S units was reduced by 11–20%, the proportion of G units was increased by 17–32%, there was increased sinapaldehyde accumulation in lignin and ferulic acid abundance was reduced relative to control plants. Analysed transgenic barley plants had an orange stem phenotype. Growth season and conditions hugely affected the intensity of the phenotype. Because lignin plays a major role in culm strength and pathogen resistance, the influence of down-regulation of CAD on these features was characterised. The changed physicochemical nature of cell walls in HvCAD2 RNAi lines does not decrease the strength of the straw and does not decrease the resistance to the biotrophic Blumeria graminis and to the hemibiotrophic Rhynchosporium commune pathogens. The modified cell walls in the HvCAD2 RNAi lines had moderately improved sugar release for biofuel production. This study proves that it is possible to down-regulate CAD in cereal crops in order to change lignin structure and composition in plants without a negative impact on plant growth, fertility or pathogen resistance.

Page generated in 0.0923 seconds