• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3412
  • 1449
  • 984
  • 813
  • 414
  • 356
  • 91
  • 66
  • 57
  • 57
  • 57
  • 57
  • 57
  • 56
  • 55
  • Tagged with
  • 9765
  • 1673
  • 1254
  • 1203
  • 1017
  • 942
  • 830
  • 782
  • 767
  • 743
  • 712
  • 667
  • 653
  • 642
  • 632
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
911

Quality Improvement on Patient Safety at a HEmodialysis Center- Using Root Cause Analysis

Chu, Fen-Yao 16 December 2005 (has links)
The U.S. Institute of Medicine estimates that there are 98,000 people died yearly from medical errors; approximate 20,000 people died from medical adverse events annually was estimated in Taiwan. All these reports indicate that the medical errors have great impact on patient safety. The hemodialysis population in Taiwan keeps increasing these years, and this means more attention should be paid to patient safety with the growing hemodialysis population. In 2005, Taiwan Joint Commission on Hospital Accreditation sets six goals for patient safety, general guidelines for healthcare facilities, and relative regulations are mostly on standard devices. This study tries to provide more possible root causes about patient safety at a hemodialysis center. Root cause analysis (RCA) has been greatly used in patient safety because latent factors can be determined by RCA. RCA was simulated in this study at a hemodialysis center. Firstly, a series of formal questions, developed by the U.S. Department of Veteran Affairs, were used to examine the current situation. The questions used are composed of six dimensions. Then, cause-effect-diagram was used to locate latent causes, and finally identified four dimensions. Research results are mainly summarized as human resource management issues, including two root causes of inadequate professional training and overwork. Adjusted job assignment and job content are also suggested in this study.
912

What Determines a Healthcare Professional¡¦s Intention to Use a Adverse Event Reporting System? An Empirical Evaluation of the Revised Technology Acceptance Model

Shen, Wen-Hsin 08 March 2007 (has links)
Objective: Today, many healthcare organizations have implemented health care reporting systems in the hope of learning from experience to prevent or reduce adverse events, medical errors or accidents. However, most applications have failed or not been implemented as predicted. This study presents an extended technology acceptance model (TAM) that integrates subjective norm, trust, and management support into the TAM to investigate what determines healthcare professional reporting system acceptance. Design: The proposed model was empirically tested using data collected from a survey in the hospital environment. The structural equation modeling technique was used to evaluate the causal model and confirmatory factor analysis was performed to examine the reliability and validity of the measurement model. Measurements: Questionnaire administered items measuring the behavioral intention to use the reporting system and five hypothesized antecedents. Results: Our findings indicated that all variables significantly affected healthcare professionals¡¦ behavioral intention to use the reporting system. Among them, the subjective norm had the most significant influence. Conclusion: The proposed model provides a means to understand what factors determine healthcare professional¡¦s behavioral intention to use a reporting system and how this may affect future use. In addition, antecedents to the behavioral intent can be used to predict reporting system acceptance in advance of system development.
913

Fault-Tolerant Routing on the Star Graph Using Safety Vectors

Yeh, Sheng-I 27 July 2000 (has links)
When the number of nodes increases, the chance that nodes or links fail increases. Then a fault-tolerant routing method is important to maintian the performance of the system. In the hypercube, safety levels and safety vectors provide the fault distribution information used to guide routing fault-tolerantly. The safety vectors for the hypercube describes the fault distribution more percisely than the safety level. The concept of safety levels has been applied to the star graph by other researchers. In this thesis, we apply the concept of the safety vectors in the hypercube to the star graph, and define three different safety vectors, including undirected safety vector, directed safety vector, and statistical safety vector. We first show the ability of the undirected safety vector. Then we extend the ideal to the directed safety vector and show it is better in deciding routing paths than the safety level for the star graph. We also show the reason that makes the directed safety vector not able to be used for derouting. In the previous result, a little change can make the directed safety vector usable for derouting in the hypercube. However, for the star graph, we can use only the information of neighbors to perform derouting with a slight modification in the directed safety vector. Then we set levels to the routing ability using the statistical safety vector. Try to make it contain more information of the fault distribution.
914

Safety assured financial evaluation of maintenance

Erguina, Vera 30 September 2004 (has links)
Management decisions in complex industrial facilities usually consider both the economic and environmental aspects of the plant's performance. For nuclear power plants (NPPs), safety is also a very substantial issue. The objectives of this dissertation are to develop and demonstrate a novel useful conceptual model that could be used to allocate maintenance funds for a nuclear power plant in such a way as to meet all specified safety requirements and objectives, while achieving a high degree of economic performance. The model is based on the general theory that the reliability of a plant at any time is a function of its initial reliability and the maintenance history of the individual plant components (Smith, 1997). Such a model can assist in evaluating strategic management decisions regarding allocation of funds for nuclear power plant maintenance. It could be used as a simulation tool; various scenarios could be studied to answer "what if" questions. Simulations of this type will allow a better understanding of the relationship between maintenance, economic performance, and safety, and consequently will lead to better decision making. The novelty of this model is tied to the intimate relationship that it develops between maintenance activities at a nuclear plant, and their relationship to prescribed safety requirements and to the economic performance of that plant.
915

Development of an optimal impact energy absorber for highway crash cushions

Michalec, Christopher Ryan 01 November 2005 (has links)
The objective of this research is to develop a new and efficient method of absorbing a vehicle??s kinetic energy for highway safety crash cushions. A vehicle that makes a direct impact with a rigid highway structure traveling at highway speeds can be fatal for its occupants. Crash cushions are implemented on roadways in front of these rigid structures with the intent to ??soften?? the impact. The cushion will bring a vehicle to a stop at safe rates before it impacts the rigid structure. The energy absorbing component of the crash cushion must meet four main requirements. The cushion must reduce the vehicles speed at a rate that does not allow the occupant to impact the vehicle interior at velocities greater than 12 m/s. The cushion must then bring the vehicle to a complete stop with deceleration rates below 20 g??s. A crash cushion must satisfy these requirements for an 820 kg vehicle and a 2000 kg vehicle traveling at 100 km/hr. Advanced design methodologies were applied to enable multiple, innovative design concepts. These concepts made use of the deformation of steel in structural pipe, structural angle, and structural plate to reduce the velocity of a vehicle at a safe rate. Critical design parameters were identified which allowed for efficient and effective numerical experiments to be conducted. The data collected from these experiments were then validated when compared to physical test data. After the data had been collected, each of the designs was compared to one another in order to decide upon the best design. The design selected was the deforming plate concept which makes use of steel plate mounted in a fashion that created two arms that acted similar to two cantilever beams. A wedge was forced beneath these arms deforming them upward. This design is effective because the deformation can be easily controlled by the thickness of the plate, the moment arm created by the wedge, and the geometry of the wedge. Steel plate is a readily available material that requires minimal manufacturing for installation preparation making it cost-effective, and easy to install. In the event of impact with the cushion, new parts will be inexpensive and readily available. Being reusable, easy to repair and low in cost, the energy absorbing concept presented herein is a cost effective alternative to existing energy absorbing technology. Due to replaceable parts being readily available, repair time and cost will be reduced compared to other designs that require new parts to be fabricated for replacement. This will make for a competitive design.
916

Making the business case for process safety using value-at-risk concepts

Fang, Jayming Sha 30 October 2006 (has links)
An increasing emphasis on chemical process safety over the last two decades has led to the development and application of powerful risk assessment tools. Hazard analysis and risk evaluation techniques have developed to the point where quantitatively meaningful risks can be calculated for processes and plants. However, the results are typically presented in semi-quantitative “ranked list” or “categorical matrix” formats, which are certainly useful but not optimal for making business decisions. A relatively new technique for performing valuation under uncertainty, Value at Risk (VaR), has been developed in the financial world. VaR is a method of evaluating the probability of a gain or loss by a complex venture, by examining the stochastic behavior of its components. We believe that combining quantitative risk assessment techniques with VaR concepts will bridge the gap between engineers and scientists who determine process risk and business leaders and policy makers who evaluate, manage, or regulate risk. We present a few basic examples of the application of VaR to hazard analysis in the chemical process industry. We discover that by using the VaR tool we are able to present data that allows management to make better informed decisions.
917

A categorical model for traffic incident likelihood estimation

Kuchangi, Shamanth 25 April 2007 (has links)
In this thesis an incident prediction model is formulated and calibrated. The primary idea of the model developed is to correlate the expected number of crashes on any section of a freeway to a set of traffic stream characteristics, so that a reliable estimation of likelihood of crashes can be provided on a real-time basis. Traffic stream variables used as explanatory variables in this model are termed as “incident precursors”. The most promising incident precursors for the model formulation for this research were determined by reviewing past research. The statistical model employed is the categorical log-linear model with coefficient of speed variation and occupancy as the precursors. Peak-hour indicators and roadway-type indicators were additional categorical variables used in the model. The model was calibrated using historical loop detector data and crash reports, both of which were available from test beds in Austin, Texas. An examination of the calibrated model indicated that the model distinguished different levels of crash rate for different precursor values and hence could be a useful tool in estimating the likelihood of incidents for real-time freeway incident management systems.
918

Resilient engineered systems: the development of an inherent system property

Mitchell, Susan McAlpin 17 September 2007 (has links)
Protecting modern engineered systems has become increasingly difficult due to their complexity and the difficulty of predicting potential failures. With the added threat of terrorism, the desire to design systems resilient to potential faults has increased. The concept of a resilient system – one that can withstand unanticipated failures without disastrous consequences – provides promise for designing safer systems. Resilience has been recognized in research settings as a desired end product of specific systems, but resilience as a general, inherent, measurable property of systems had yet to be established. To achieve this goal, system resilience was related to an established concept, the resiliency of a material. System resilience was defined as the amount of energy a system can store before reaching a point of instability. The energy input into each system as well as the system’s exergy were used to develop system stress and system strain variables. Process variable changes to four test systems – a steam pipe, a water pipe, a water pump, and a heat exchanger – were applied to obtain series of system stress and system strain data that were then graphed to form characteristic system response curves. Resilience was quantified by performing power-law regression on each curve to determine the variable ranges where the regression line accurately described the data and where the data began to deviate from that power-law trend. Finally, the four test systems were analyzed in depth by combining them into an overall system using the process simulator ASPEN. The ranges predicted by the overall system data were compared to the ranges predicted for the individual equipment. Finally, future work opportunities were outlined to show potential areas for expansion of the methodology.
919

Design of Safety Device of A Large Lithium Battery Cell

Hung, Chun-jui 02 September 2009 (has links)
In recent years, LEV and hybrid has been gradually popularized due to the energy crisis and increasing environmental awareness. The prevalence of LEV is to use batteries to replace the power from the gasoline. Secondary lithium battery is a good option for LEV since it has the features of light weights, high power density, long life, low pollution, and works without memory effect. However, the safety is a concern for end-users with more and more recalls of lithium-ion batteries involving the explosions. The purpose of this research is to propose a systematic approach of battery safety device with an engineering design method. The analysis on the factors affecting the safety is prior to the objective of this study as to define the specification of the battery safety device. Then, substance-field analysis and standard is to improve the initial systematic model, and the solution is specified with the synthesis of morphological matrix. Under the safety test for batteries, the effectiveness and feasibility of protected device is eventually verified.
920

Road Traffic Safety Problem Based Learning Module

David, Iuliana January 2008 (has links)
<p>Road traffic safety has increasingly become in need of educated road safety professionals, as the number of accidents in the World Health Organization member countries exceeds one million. The profession itself is transitioning from experience based decision making to empirical, theoretical and mathematical based solutions. However, road traffic safety is a multidiscipline, crossing over many fields and requiring a high degree of communication between different institutions. There are very few institutions that provide programs in the field; furthermore, they employ traditional lecture-based teaching methods. The traditional teaching environment does not fulfill the educational needs of future traffic safety professionals due to its rigidity and lack of problem solving exercises.</p><p>An alternative method, namely problem based learning, is recommended as an alternative teaching method in this paper. The thesis is constructed in such a way as to develop a complete road traffic safety educational module at graduate and post graduate level.</p><p>The theoretical basis on which a road traffic safety module is later built is presented in the first part of the thesis. Major concepts in road traffic safety, as well as problem based learning methods are investigated. In addition, a literature review SWOT analysis based on literature is conducted.The module development consists of establishing the road traffic safety learning goals for each segment in the module, appropriate assessment criteria and group work format. The module contains gradual difficulty level problems, starting from the easiest topic and easiest format (closed ended problem) and ending with the hardest topic and hardest format (open ended problem).</p><p>The last section employs the SWOT analysis findings in the theoretical section to develop a SWOT analysis of the road traffic safety module presented in the thesis.</p>

Page generated in 0.0613 seconds