• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 78
  • 18
  • 18
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 142
  • 142
  • 102
  • 31
  • 22
  • 19
  • 18
  • 17
  • 17
  • 17
  • 16
  • 16
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Thin film composite membranes for desalination

Perera, Dehiwalage Harshani Nimalika January 2015 (has links)
No description available.
52

A numerical study of micro flow and its applications on thermal energy conversion and water desalination. / CUHK electronic theses & dissertations collection

January 2010 (has links)
(1) A new model for the mass transfer in Direct Contact Membrane Distillation (DCMD) process is developed. The model is based on Direct Simulation Monte Carlo (DSMC) method. It avoids the over simplification of the resistance mechanisms and hence, give more accurate prediction. The model is validated by means of experiments. The influences of the main parameters in DCMD are also studied, including temperature difference between the feed side and the permeate side, the membrane's thickness and the pore size. Moreover, it is proposed to use aerogel as the membrane material. It is shown that the aerogel's hydrophobic property, low thermal conductivity and high porosity offer a much improved performance over the commonly used membrane material PTFE. The fresh water productivity can reach 10.0 kg/m2 per day. / (2) A new energy harvesting method for converting thermal energy to kinetic energy is proposed. This method is based on the rarefied gas phenomenon called Knudsen effect. By Knudsen effect, a gas flow can be generated from temperature difference. In order to generate Knudsen effect, a special material, aerogel, is used. It is a porous material full of holes of dozens of nanometers. Using Direct Simulation Monte Carlo (DSMC) simulation, it is shown that Knudsen effect still works under atmosphere pressure with aerogel material. Accordingly, a device is designed. Based on the numerical simulation, the device can generate about 70 W kinetic energy when driven by a solar panel with intensity of 1 kW/m2. / (3) A solar desalination system is designed. This system is based on a combination of Knudsen compressor and simple solar still. The Knudsen effect is generated from the aerogel driven by solar radiation. As a result, the system operates at lower pressure resulting in enhanced water evaporation process. Based on the simulation, the evaporation rate is significantly increased. It is found that in a typical summer day in tropic region like Hong Kong, such a system can generate about 5 kg fresh water per 1 m2 solar still per day. This number is about 30% higher than the simple direct solar still. Moreover, the proposed technology can be readily combined with other technologies such as condensation heat recovery to further improve the fresh water productivity. The optimal working condition is also studied. / Energy and water are two of the most important issues in the world today. The social and economic health of the world depends on sustainable supply of both energy and water. Especially, these two critical resources are always inextricably linked. To solve the emerging crisis of energy and water, renewable energy technologies is the key. On the other hand, recent advances in Micro-Electro-Mechanical Systems (MEMS) technology have opened new ways for us to use micro/nano scale physical and chemical effects. It is no doubted that the combination of the renewable energy technologies and micro/nano technologies will have great potential and there are plenty of room to explore. / The research presented in this thesis focuses on extending the micro scale effect to the macroscopic applications. Based on this idea, a new energy harvesting method and two new water desalination technologies are proposed, with computer simulations and experiment validations. These include: / Zhang, Peng. / Adviser: Ruxu Du. / Source: Dissertation Abstracts International, Volume: 72-04, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 123-135). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
53

Composite fouling of calcium sulfate and calcium carbonate in a dynamic seawater reverse osmosis unit

Wang, Yuan, School of Chemical Engineering & Industrial Chemistry, UNSW January 2005 (has links)
Deposition of calcium carbonate (CaCO3) and calcium sulfate (CaSO4) causes serious processing problems and limits the productivity of seawater reverse osmosis (RO) desalination. The interactions between CaSO4 and CaCO3 in the dynamic seawater RO systems have been neglected previously because conventional studies mainly focused on individual compounds or mixed compounds in batch systems. The present work evaluates composite fouling behavior of CaSO4 and CaCO3 in a dynamic RO unit. The fouling experiments were performed at constant pressure and velocity by a partial recycling mode which permeate was withdrawn from the system during the recirculation of retentate to simulate the increasing of water recovery level. The fouling phenomena were monitored by the decline of flux. Scanning electron microscopy (SEM) with a combination of elemental dispersive x-ray microanalysis (EDS), and x-ray powder diffraction (XRD) was used to identify the morphological features, chemical compositions and crystalline phases of foulants. The interactions of CaSO4 and CaCO3 were investigated by the comparison between individual CaSO4 or CaCO3 fouling and composite fouling, and by varying SO42-/HCO3- molar ratio of the feed. A recently developed approach, Scaling Potential Index (SPI) incorporated with measured concentration polarization modulus (CP), for assessing the fouling tendency of inorganic salts on the membrane surface was validated in the dynamic tests. In addition, the effectiveness of two generic scale inhibitors, polyacrylic acid (molecular weight =2100, PA) and sodium hexametaphosphate (SHMP) were evaluated. Some of the highlights of the obtained results are as follows: ??????The precipitation kinetics, morphology and adhesive strength of composite scales were different from pure precipitates ??????CaSO4 precipitated as gypsum while CaCO3 precipitated as two crystalline phases: calcite and aragonite ??????The crystalline phases as well as precipitation kinetics were affected by SO42-/HCO3- ratio ??????Scaling Potential Index was able to predict the fouling tendency of CaSO4 and CaCO3 accurately ??????The dosage of PA and SHMP was effective to mitigate fouling Results of this work are significant, not only because they have made contribution to the fundamental understanding of composite inorganic fouling in RO membrane systems which was ignored previously, but also because they may play a key role in the development of scale control.
54

Final Report: Investigations on the Subsurface Disposal of Waste Effluents at Inland Sites

Wilson, L. G. 02 1900 (has links)
Final Report, Investigations on the Subsurface Disposal of Waste Effluents at Inland Sites / Grant No. 14-01-0001-1805 / United States Department of the Interior, The Office of Saline Water / By L.G. Wilson, Hydrologist, The Water Resources Research Center, The University of Arizona / February 1971.
55

Membrane distillation of concentrated brines.

29 October 2010 (has links)
Salinity is one of the most critical environmental problems for water scarce countries, / Thesis (Ph.D.Eng.)-University of KwaZulu-Natal, 2006.
56

Composite fouling of calcium sulfate and calcium carbonate in a dynamic seawater reverse osmosis unit

Wang, Yuan, School of Chemical Engineering & Industrial Chemistry, UNSW January 2005 (has links)
Deposition of calcium carbonate (CaCO3) and calcium sulfate (CaSO4) causes serious processing problems and limits the productivity of seawater reverse osmosis (RO) desalination. The interactions between CaSO4 and CaCO3 in the dynamic seawater RO systems have been neglected previously because conventional studies mainly focused on individual compounds or mixed compounds in batch systems. The present work evaluates composite fouling behavior of CaSO4 and CaCO3 in a dynamic RO unit. The fouling experiments were performed at constant pressure and velocity by a partial recycling mode which permeate was withdrawn from the system during the recirculation of retentate to simulate the increasing of water recovery level. The fouling phenomena were monitored by the decline of flux. Scanning electron microscopy (SEM) with a combination of elemental dispersive x-ray microanalysis (EDS), and x-ray powder diffraction (XRD) was used to identify the morphological features, chemical compositions and crystalline phases of foulants. The interactions of CaSO4 and CaCO3 were investigated by the comparison between individual CaSO4 or CaCO3 fouling and composite fouling, and by varying SO42-/HCO3- molar ratio of the feed. A recently developed approach, Scaling Potential Index (SPI) incorporated with measured concentration polarization modulus (CP), for assessing the fouling tendency of inorganic salts on the membrane surface was validated in the dynamic tests. In addition, the effectiveness of two generic scale inhibitors, polyacrylic acid (molecular weight =2100, PA) and sodium hexametaphosphate (SHMP) were evaluated. Some of the highlights of the obtained results are as follows: ??????The precipitation kinetics, morphology and adhesive strength of composite scales were different from pure precipitates ??????CaSO4 precipitated as gypsum while CaCO3 precipitated as two crystalline phases: calcite and aragonite ??????The crystalline phases as well as precipitation kinetics were affected by SO42-/HCO3- ratio ??????Scaling Potential Index was able to predict the fouling tendency of CaSO4 and CaCO3 accurately ??????The dosage of PA and SHMP was effective to mitigate fouling Results of this work are significant, not only because they have made contribution to the fundamental understanding of composite inorganic fouling in RO membrane systems which was ignored previously, but also because they may play a key role in the development of scale control.
57

Biological and chemical features associated with salt production in solar saltfields at Dry Creek, South Australia / Fereshteh Ghassemzadeh.

Ghassemzadeh, Fereshteh January 1997 (has links)
Bibliography: leaves 150-175. / xv, 175, [114] leaves, [10] leaves of plates : ill. (some col.), maps ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / The information collected from physico-chemical, biological and experimental investigation is used to make appropriate recommendations about solar salt pond management. Proper management of biological systems in essential for production of high quality salt. / Thesis (Ph.D.)--University of Adelaide, Dept. of Zoology, 1998?
58

Capacitive deionization tehnology TM development and evaluation of an industrial prototype system

Welgemoed, Thomas J. January 2005 (has links)
Thesis (M.Eng.)(Chemical)--University of Pretoria, 2005. / Title from opening screen (viewed March 14, 2005). Includes summary. Includes bibliographical references.
59

Membrane contractor processes for desalination of brackish water reverse osmosis brines /

Martinetti, C. Riziero. January 2008 (has links)
Thesis (M.S.)--University of Nevada, Reno, 2008. / "May, 2008." Includes bibliographical references (leaves 35-38). Library also has microfilm. Ann Arbor, Mich. : ProQuest Information and Learning Company, [2008]. 1 microfilm reel ; 35 mm. Online version available on the World Wide Web.
60

Treatment of saline solutions using air gap membrane distillation (AGMD)

Alkhudhiri, Abdullah Ibrahim January 2013 (has links)
No description available.

Page generated in 0.2412 seconds