• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 335
  • 263
  • 67
  • 36
  • 14
  • 13
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 898
  • 245
  • 147
  • 117
  • 76
  • 70
  • 63
  • 62
  • 57
  • 56
  • 56
  • 51
  • 51
  • 50
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

New challenges for lucerne in southern Australian farming systems : identifying and breeding diverse lucerne germplasm to match these requirements.

Humphries, Alan Wayne January 2008 (has links)
Lucerne is a deep-rooted perennial pasture that is promoted to land managers in southern Australia to mitigate the effects of dryland salinity, a problem of national significance caused by the replacement of native trees and shrubs with annual crops and pastures. In recent years, the acceptance of climate change has provided further rationale for increasing the use of perennial legumes in our farming systems. Perennial legumes have a role in offsetting C02 emissions by sequestering C and N in soil, and provide new, resilient options for future farming in a warmer and more variable climate. This research has focused on evaluating the diverse range of germplasm found in lucerne (Medicago sativa spp.) for a range of attributes in order to determine its compatibility with existing and future farming systems in southern Australia. Regional field evaluation at 8 sites in southern Australia showed that lucerne is a broadly adapted and robust plant. After 3 years, plant density ranged from 2-55 plants / m2 with differences in persistence attributed to tolerance to a combination of stresses including soil acidity, saline and sodic subsoils, drought conditions and persistent heavy grazing. Highly winter-active lucerne (class 9-10) was confirmed to be the most suitable group for short phase rotations in southern Australia, providing grazing is well managed. This germplasm was less persistent than other winter activity groups, but produces more total herbage yield in environments with winter dominant rainfall patterns. Highly winter-active lucerne has poor persistence under continuous grazing, but this may aid in its removal when used in rotation with crops. Winteractive germplasm (class 6-8) was more grazing tolerant and persistent, making it the most suitable group for longer phase rotations (>4 years), or where more flexible grazing management practices are required (i.e. 35 days grazing followed by 35 days recovery). Individual grazing tolerant plants from this group were selected and randomly inter-mated to form new breeder’s lines in the development of a grazing tolerant cultivar. For the first time, the high water-use of a farming system involving wheat overcropped into lucerne is presented. Lucerne over-cropped with wheat used an additional 43-88 mm of water in comparison to continuous wheat at Roseworthy and Katanning respectively. Over-cropping reduced wheat yield by 13-63%, but it can be more efficient in terms of land area to grow lucerne and wheat as a mixture than on separate parcels of land. Very winter-dormant lucerne (class 1-2) appears to be less competitive with winter cereal crops during wheat establishment. It may also be possible to reduce lucerne’s competition with wheat at the critical stage of anthesis, with low spring yielding lucerne varieties identified in this research (SA37908). This group of plants provides excellent potential for the development of high water-use farming systems because they are grazing tolerant and persistent, and have summer forage production and sub-soil water extraction rates that are equivalent to winter active lucerne. The research has been used to identify the perfect ideotype for lucerne in phase farming and over-cropping systems, which can be used to set targets in future breeding programs. The research also highlights current opportunities for the integration of lucerne into southern Australian farming systems to help curb the spread of dryland salinity and reduce the impact of climate change. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1344608 / Thesis (Ph.D.) - University of Adelaide, School of Agriculture, Food and Wine, 2008
422

The rectal gland and euryhalinity in elasmobranch fish

Good, Jonathan Unknown Date (has links)
1) Both the partially euryhaline Scyliorhinus canicula and the fully euryhaline Carcharhinus leucas significantly modify plasma concentrations of urea and chloride (Cl-) (and sodium (Na+)) in response to changes in environmental salinity, in order to maintain overall plasma osmolality slightly hyper- or isosmotic to the environment. C. leucas has a greater capacity for urea retention in dilute environments. In S. canicula all of these changes occur within 12 hours of transfer, with the notable exception of increasing plasma urea in response to acute transfer to elevated salinity. 2) A new technique, 51Cr-labelled erythrocytes, was developed to assess blood volume in elasmobranch fish. S. canicula displays significant haemodilution and concentration during chronic acclimation to decreased and increased environmental salinity respectively. Significant changes in blood volume were seen within 6 hours of acute salinity transfer. 3) In vivo secretion rates were measured in the rectal gland of S. canicula during both chronic and acute salinity transfer. Significant changes in Cl- clearance occur during acute transfer, as plasma Na+ and Cl- levels are modified, but do not persist in chronically acclimated animals. This is achieved through modifications in the volume and Cl- concentration of the secretory fluid. 4) C. leucas is able to significantly alter the abundance and/or recruitment of Na+, K+-ATPase in both the rectal gland and the kidney during chronic acclimation to salinity transfer. This is presumably in response to increased requirements for NaCl secretion in SW and osmolyte retention in FW respectively. S. canicula do not significantly alter abundance and/or recruitment of Na+, K+-ATPase in the principle osmoregulatory organs following chronic acclimation to salinity transfer. 5) Chronically SW acclimated C. leucas modify the proportion of ouabain-sensitive oxygen consumption in the tissues of the rectal gland in response to the secretory endocrine stimulus C-type natriuretic peptide (CNP). No such modification occurred in the rectal glands of FW acclimated C. leucas. This represents a change in the sensitivity and response to endocrine control factors during chronic acclimation to salinity transfer in this species. No such modification was seen the in the proportion of ouabain-sensitive oxygen consumption in the rectal glands of chronically acclimated S. canicula in response to CNP. These results were discussed in relation to the capacity for modification of osmoregulatory organs in partially and fully euryhaline elasmobranchs.
423

Use of artificial neural networks for modelling multivariate water quality times series / by Holger Robert Maier.

Maier, Holger R. January 1995 (has links)
Corrigenda attached to back end paper. / Bibliography: p. 526-559. / xxx, 559 p. : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / This research analyses the suitability of back-propagation artifical neural networks (ANNs) for modelling multivariate water quality time series. The ANNs are successfully applied to two case studies, the long-term forcasting of salinity and the modelling of blue-green algae, in the River Murray, Australia. / Thesis (Ph.D.)--University of Adelaide, Dept. of Civil and Environmental Engineering, 1996?
424

RIPARIAN GROUNDWATER FLOW AND SALT TRANSPORT IN AQUIFER-ESTUARY INTERACTION

Mothei Lenkopane Unknown Date (has links)
Estuarine ecosystems are under enormous stress due to rapid coastal developments and climate change. Proper management of these important ecosystems requires a good understanding of their key processes. In this thesis, riparian groundwater-surface water interaction is explored for an aquifer-estuary system primarily by a series of numerical experiments. The work focuses on riparian-scale groundwater flow and salinization. The overall aim of the study was to extend our understanding of aquifer-estuary exchange, which is currently centered on the lower marine estuarine reach, to middle estuaries (i.e., the estuary reach that has variable salinity). The numerical experiments were guided by previous studies and observations made from an exploratory field investigation conducted in and next to Sandy Creek, a macro-tidal estuary incised in the alluvial aquifer of the Pioneer Valley, North-eastern Australia (Longitude 49.11°, Latitude -21.27°). The following observations were made from the field investigation: Sandy Creek estuary experiences a variable salinity regime in its mid reaches that consists of periods of 1) freshwater flushing due to up catchment-derived flooding, 2) persistent freshwater conditions for at least 2 months following the flooding, 3) tidal salinity fluctuations and 4) constant near-seawater salinity; laterally extensive and disconnected aquitards were found to occur at the field site; Sandy Creek had an essentially ‘vertical’ bank slope. Numerical simulations were conducted using the finite element modeling code FEFLOW for saturated unsaturated, variable-density groundwater flow and solute transport, to examine the influence of the following factors on aquifer-estuary exchange: a tidally varying estuarine salinity and hydraulic head, a seasonal freshwater flush (i.e., estuary with freshwater and an elevated stage due to an up catchment sourced flood), near estuary aquitard layers, lateral asymmetry (about the estuary centerline) in hydraulic conductivity and regional hydraulic gradients. The simulations neglected seepage face development after numerical experiments showed that for a vertical bank estuary interacting with a sandy loam aquifer, seepage face effects on groundwater flow and associated salinity distribution were minimal. The following observations were drawn from the range of numerical experiments considered. Tidal salinity fluctuations in the estuary (varying between 0 and 1 - i.e., using a relative salinity scale where a salinity of 1 is seawater) produced flow paths and residence times that were distinctly different to the constant seawater salinity case. While the constant average 0.5 salinity case and the corresponding tidally-varying salinity case (i.e., salinity varying between 0 and 1) produced somewhat comparable results in terms of RUC and RLC (RUC represents groundwater discharge to the estuary that originated from recharge to the estuary bank and RLC groundwater discharge to the estuary that originated from recharge through the estuary bed), whereas flow paths and the total salt mass in the aquifer differed. Freshwater flushing simulations indicated that the near-estuary aquifer responds rapidly to a 2-day ‘wet season’ flushing event with a short-lived freshwater lens created through freshening of the hyporheic zone. Annual cycling of the seasonal flushing led to significant disruption of the estuary water circulation in the aquifer thereby impacting on residence times, transport pathways, and RUC and RLC, and acting to potentially remobilize groundwater and contaminants previously trapped in continuous and semi-continuous re-circulation cells. Although groundwater flow paths determined using tide-averaged velocity vectors were representative of flow paths from transient tidally driven flow vector field, residence times calculated from the two flow fields were markedly different. The influence of riparian scale aquitards and lateral asymmetry (about the estuary centreline) in hydraulic gradients and hydraulic conductivity on groundwater flow and associated salinity distribution was also found to be sensitive to estuarine salinity conditions. The results indicate that observations made about aquifer-estuary interaction in the lower estuary may not be directly applicable to the middle estuary. According to the simulations, tidal salinity variations in the estuary are important factors that affect hyporheic-riparian salt transport processes and that the use of a time averaged estuarine salinity as an approximation to variable salinity conditions is unsuitable for the accurate prediction of the near-estuary dynamics in middle estuaries. This study was based on a two dimensional representation of the riparian scale interaction and it is clear that future research needs to focus on the three-dimensionality of the aquifer-estuary system, incorporating spatially and temporally varying flow and transport characteristics. That is, many estuaries are tortuous and the aquifer geology spatially complex such that assumptions required for the two-dimensional section will most likely restrict application to the field. The tidal dynamics in the middle estuary is also expected to generate three dimensional aspects to the aquifer-estuary interaction. Thus further investigation that explicitly models the hydrodynamics and salt transport in the estuary and estuarine morphology is required to refine the insight provided by the simple conceptual model adopted in this study.
425

Modelling of canal water acidity due to acid sulphate soils: a case study of the Camau Peninsula, Mekong Delta, Vietnam

Phong, N. D. January 2008 (has links)
Acid Sulphate Soils (ASS) often cause acidic pollution in canal water, which negatively impacts on water quality, biodiversity and the livelihood of farmers and fishermen, especially the landless poor. The problem is particularly acute in the coastal zones, where people already suffer from the consequences of salinity intrusion. Reducing acidic pollution is important for improving agricultural and aqua-cultural production and also the living conditions of people living in coastal zones with ASS. This study aims at developing an analytical tool that can simulate the propagation of acidic pollution and that would allow planers and managers to develop water management options and other resource management measures to reduce acidic pollution in the canal network of a coastal zone. / This study utilizes a systems approach, with a series of field, laboratory studies, in combination with statistical and GIS-based analyses and simulation modelling. Field and laboratory studies were carried out during 2001 - 2006 in Ca Mau peninsula, Mekong Delta, Vietnam, to fill in knowledge gaps on the source and amount of acidic loads from soil to the water surroundings, their interaction with saline water and their propagation in the canal network. Knowledge generated from this study was used in developing and validating a model to simulate the propagation of acidity in the tidal canal network with brackish water. / Measured data showed that the acidic pollution in the canal network varies seasonally. The pH of the canal water was lowest (3 – 4.5) at the beginning of the rainy season and highest (7 – 7.5) at the end of the rainy season and during the dry season. The reduced dredging activities in year 2005 and 2006 may explain why the acidic pollution decreased in 2005 – 2006 compared with 2001 –2004. The most serious acidic pollution occurs when the two following conditions are present simultaneously: (i) The existence of newly dredged canals (and hence the deposition of the excavated spoils on the canal embankment) in areas with ASS (especially with a severe ASS); and (ii) little or a lack of water exchange from tidal flows. Field experiments showed that ASS embankments within 2-3 years after dredging represent a high acidity hazard because they can release into the canal a total acidity, mainly from runoff and seepage water, of up to 2.7 mol H+day-1 per meter length of canal embankment. Functional relationships were established allowing quantification of the daily acid load transferred from fields and canal embankments to the canal network. / A laboratory titration experiment showed that saline water could buffer the effects of acidic pollution in the canal water. A new ACIDITY module was developed and was coupled to an existing hydraulics and salinity model (the Vietnam River Systems And Plains - VRSAP). The model was calibrated with measured data from 2003 and validated with data from 2005. The Model is the first of its kind able to simulate the temporal and spatial dynamics of changes of pH (as an indicator of acidity) at a regional scale, together with salinity and water flow characteristics in a tidal canal network with brackish water. The Model can be used to investigate the effects of different scenarios of water and other resource management options on the extent of acidic pollution in a coastal area. Analysis of simulation runs for various scenarios indicate that opening the two main sluices along the East Sea at high tide in one day every week in May and June for saline water intake, combined with widening the canals that connect these sluices to the West Sea can eliminate the acidity problem in the study area. Large scale dredging of canals of ASS in fresh water zone should be avoided as it can create severe acidic pollution of the canal water.
426

RIPARIAN GROUNDWATER FLOW AND SALT TRANSPORT IN AQUIFER-ESTUARY INTERACTION

Mothei Lenkopane Unknown Date (has links)
Estuarine ecosystems are under enormous stress due to rapid coastal developments and climate change. Proper management of these important ecosystems requires a good understanding of their key processes. In this thesis, riparian groundwater-surface water interaction is explored for an aquifer-estuary system primarily by a series of numerical experiments. The work focuses on riparian-scale groundwater flow and salinization. The overall aim of the study was to extend our understanding of aquifer-estuary exchange, which is currently centered on the lower marine estuarine reach, to middle estuaries (i.e., the estuary reach that has variable salinity). The numerical experiments were guided by previous studies and observations made from an exploratory field investigation conducted in and next to Sandy Creek, a macro-tidal estuary incised in the alluvial aquifer of the Pioneer Valley, North-eastern Australia (Longitude 49.11°, Latitude -21.27°). The following observations were made from the field investigation: Sandy Creek estuary experiences a variable salinity regime in its mid reaches that consists of periods of 1) freshwater flushing due to up catchment-derived flooding, 2) persistent freshwater conditions for at least 2 months following the flooding, 3) tidal salinity fluctuations and 4) constant near-seawater salinity; laterally extensive and disconnected aquitards were found to occur at the field site; Sandy Creek had an essentially ‘vertical’ bank slope. Numerical simulations were conducted using the finite element modeling code FEFLOW for saturated unsaturated, variable-density groundwater flow and solute transport, to examine the influence of the following factors on aquifer-estuary exchange: a tidally varying estuarine salinity and hydraulic head, a seasonal freshwater flush (i.e., estuary with freshwater and an elevated stage due to an up catchment sourced flood), near estuary aquitard layers, lateral asymmetry (about the estuary centerline) in hydraulic conductivity and regional hydraulic gradients. The simulations neglected seepage face development after numerical experiments showed that for a vertical bank estuary interacting with a sandy loam aquifer, seepage face effects on groundwater flow and associated salinity distribution were minimal. The following observations were drawn from the range of numerical experiments considered. Tidal salinity fluctuations in the estuary (varying between 0 and 1 - i.e., using a relative salinity scale where a salinity of 1 is seawater) produced flow paths and residence times that were distinctly different to the constant seawater salinity case. While the constant average 0.5 salinity case and the corresponding tidally-varying salinity case (i.e., salinity varying between 0 and 1) produced somewhat comparable results in terms of RUC and RLC (RUC represents groundwater discharge to the estuary that originated from recharge to the estuary bank and RLC groundwater discharge to the estuary that originated from recharge through the estuary bed), whereas flow paths and the total salt mass in the aquifer differed. Freshwater flushing simulations indicated that the near-estuary aquifer responds rapidly to a 2-day ‘wet season’ flushing event with a short-lived freshwater lens created through freshening of the hyporheic zone. Annual cycling of the seasonal flushing led to significant disruption of the estuary water circulation in the aquifer thereby impacting on residence times, transport pathways, and RUC and RLC, and acting to potentially remobilize groundwater and contaminants previously trapped in continuous and semi-continuous re-circulation cells. Although groundwater flow paths determined using tide-averaged velocity vectors were representative of flow paths from transient tidally driven flow vector field, residence times calculated from the two flow fields were markedly different. The influence of riparian scale aquitards and lateral asymmetry (about the estuary centreline) in hydraulic gradients and hydraulic conductivity on groundwater flow and associated salinity distribution was also found to be sensitive to estuarine salinity conditions. The results indicate that observations made about aquifer-estuary interaction in the lower estuary may not be directly applicable to the middle estuary. According to the simulations, tidal salinity variations in the estuary are important factors that affect hyporheic-riparian salt transport processes and that the use of a time averaged estuarine salinity as an approximation to variable salinity conditions is unsuitable for the accurate prediction of the near-estuary dynamics in middle estuaries. This study was based on a two dimensional representation of the riparian scale interaction and it is clear that future research needs to focus on the three-dimensionality of the aquifer-estuary system, incorporating spatially and temporally varying flow and transport characteristics. That is, many estuaries are tortuous and the aquifer geology spatially complex such that assumptions required for the two-dimensional section will most likely restrict application to the field. The tidal dynamics in the middle estuary is also expected to generate three dimensional aspects to the aquifer-estuary interaction. Thus further investigation that explicitly models the hydrodynamics and salt transport in the estuary and estuarine morphology is required to refine the insight provided by the simple conceptual model adopted in this study.
427

Subsoil constraints to root growth and water use efficiency in northern grain soils: osmotic and toxic effects of salinity

Anna Sheldon Unknown Date (has links)
Abstract Salinity has considerable adverse effects on agriculture through reduction in plant growth and water use. Sodium chloride salinity has both an osmotic effect on plant water relations, and a toxic effect on cellular processes. The relative contribution of these two effects to plant growth depends on a range of factors including plant specific tolerance mechanisms, such as Na and Cl exclusion, compartmentation of ions at a whole plant and cellular level, and synthesis of organic osmotic compounds for plant osmotic adjustment. Plants growing in saline soil would also experience reduced plant available water, due to the additional osmotic effect on soil water potential. The effect of salinity on plant growth is further complicated by the interactions of environmental conditions with plant water and ion uptake. This thesis examines the osmotic and toxic effects of salinity on wheat (Triticum aestivum L.) and chickpea (Cicer arietinum L.), with particular focus on plant water availability, effects of Na and Cl toxicity, and temperature and humidity effects. While considerable research has been undertaken into the physiological response of plants to NaCl, our understanding of the capacity of plants to extract water from saline soils has remained largely theoretical. Total plant available water is largely determined by the matric potential of the soil. Presence of sodium chloride would have an additional osmotic effect, and previous theory stated that the salt tolerance of the plant determined the extent to which this osmotic potential reduced plant available water. The capacity of wheat and chickpea to extract water from saline soils was examined in a soil experiment where water stress was imposed on established plants, which were then grown until permanent wilting point (PWP) was reached. Wheat extracted to lower soil water potentials (-1.5 MPa), than chickpea (-900 kPa) in 0 NaCl treatments. Where salinity was low to moderate, plants were able to extract water to a PWP determined by the combined total of matric and osmotic potentials. Wheat extracted water to PWP in salinity treatments up to soil ECse of 5.3 dS/m, and chickpea to 2.9 dS/m. As salinity increased, toxic effects of salinity dominated, and water extraction by plants was significantly lower than that determined by total soil water potential. Solution culture experiments investigated the comparative toxic effects of Na, Cl and salt mixtures. Growth of wheat was reduced by Na toxicity, but not Cl toxicity, with Na causing a small, but significant additional reduction in growth, compared to high Cl or a salt mixture. Reductions in growth of 50% from control treatments occurred at -500 kPa for the Na treatment, and -630 kPa for the Cl and mixed salt treatments. In contrast, growth of chickpea was significantly reduced by both Na and Cl toxicity, with a large difference in growth compared to the salt mixture. Growth reductions of 50% occurred at -330 kPa for the Cl treatments, and -450 kPa for the Na treatment. A 50% growth reduction was not observed in the mixed salt treatment. Tolerance of saline conditions is reduced under stressful environmental conditions, such as high temperature and low relative humidity. Hot and dry conditions were shown to reduce the tolerance of saline conditions by both wheat and chickpea, compared to cool or humid conditions. Tissue concentrations of Na in wheat were disproportionately high in treatments with high evaporative demand, while tissue Cl was not related to evaporative demand. Tissue concentrations of Na in chickpea increased with temperature, but not relative humidity, while tissue Cl concentrations were highly correlated with evaporative demand. The relationships between NaCl salinity, plant water use, and environmental conditions were examined, allowing further development of the two phase salinity model. In particular, the transition point between the osmotic and toxic salinity effects. While the concentration of NaCl in the soil remains the primary factor, soil water status, environmental stresses and presence of other salts may dictate whether salinity be tolerated by the plant or not. The ability of the plant to extract water to PWP, as determined by total matric and osmotic potential has been identified as a useful indicator of salinity tolerance. The point at which toxicity of Na and/or Cl is observed is associated with a rapid increase in Na and Cl uptake by the shoot tissue, and a decrease in the amount of water the plant is able to extract from the soil. Within the osmotic region of salinity stress, the plant is able to extract water to PWP, but as NaCl becomes toxic the plant is unable to utilize this water.
428

Developing systems to identify and deploy saline and waterlogging tolerant lines of Eucalyptus occidentalis Endl

Hendrati, Rina Laksmi January 2009 (has links)
[Truncated abstract] Eucalyptus occidentalis, a timber species from south Western Australia, is highly salt and waterlogging tolerant. Screening identified genotypes tolerant of high salt concentrations and waterlogging. Tolerance at provenance, family and individual level, and how phenotypic performance under salt and waterlogging was inherited was explored to provide a breeding population. Salt and/or waterlogged screening was carried out under controlled conditions up to extreme salt levels to determine tolerance between genotypes. This tank method was shown to produce repeatable results. Seedlings of 30 families from 9 provenances were used for screening. At low salt concentration (up to 300 mM NaCl), differentiation occurred for some traits but in general there was only a slight reduction in growth under salt, and waterlogging alone was not detrimental. At high salt concentration (550 mM) differentiation occurred among genotypes for all traits. Equivalent genotypes were also planted in field trials at three sites, two with medium (583 - 847 mm) and one with low rainfall (372 - 469 mm), in southern Western Australia. Survival was low (<53%) after 9 months due to an exceptional dry season followed by 3 months waterlogging in Kirkwood (38 - 1360 mSm-1), but was high >89% after 33 months in saline fields in Sandalwindy (96 - 976 mSm-1) and Roberts (88 - 1424 mSm-1). Some families were similarly in high rank for height under saline conditions in controlled and field trials. Height had the highest narrow-sense heritability value, especially under controlled saltwaterlogging (0.85) treatment and 20% selection enabled a gain of 8-14% under controlled conditions and in the field. Leaf production under salt was not an inherited trait. Systems were developed to hasten deployment of selected material. Extended daylength (16 h) and paclobutrazol (1 mg a.i/mm stem circumference) stimulated flowering in 2 year-old plants. Clonal propagation was possible. Grafting success varied from 0-100% depending on scion/rootstock provenances. ... There was only a slight reduction in heterozygosity from species level to provenance and family levels, and two superior genotypes maintained high diversity. v Crossing was possible using one stop pollination of cut immature styles and capsule retention varied from 0-34% and germination rate from 2-96%. Genetic distance between parents was correlated with seed set and offspring fitness. Wider genetic distances increased capsule retention, seed germination and seedling survival. Under 500 mM salt-waterlogging, offspring heights were similar when parental genetic distances were similar. High heritability value for height from ANOVA-REML parental screening was confirmed using parent-offspring regression. Screened superior genotypes, which withstood very high salt concentration, provide a breeding population for further breeding and for plantations under saline regions in low-medium rainfall areas in Western Australia and other parts of the world. These trees provide an economic return in areas where no other plants may survive and an environmental service in potentially reducing waterlogging, salinity and its spread.
429

A comparative study of Cl⁻ transport across the roots of two grapevine rootstocks, K 51-40 and Paulsen, differing in salt tolerance.

Abbaspour, Nasser January 2008 (has links)
Soil salinity is one of the major abiotic stresses that decreases agricultural crop production through imposition of both ionic and osmotic stresses. The accumulation of Na⁺ and Cl⁻ in the cytosol to toxic levels inhibits metabolism. Unlike Na⁺, less is known about Cl⁻ uptake and transport in plants. Grapevine is moderately sensitive to salinity and accumulation of toxic levels of Cl⁻ in leaves is the major reason for salt-induced symptoms. In this study Cl⁻ uptake and transport mechanism(s) were investigated in two grapevine (Vitis sp.) rootstock hybrids differing in salt tolerance: 1103 Paulsen (salt tolerant) and K 51-40 (salt sensitive). Increased external salinity caused high Cl⁻ accumulation in shoots of the salt sensitive K 51-40 in comparison to Paulsen. Measurement of ¹ ⁵ NO₃⁻ net fluxes under high salinity showed that by increasing external Cl⁻ concentrations K 51-40 roots showed reduced NO₃⁻ accumulation. This was associated with increased accumulation of Cl⁻. In comparison to Paulsen, K 51-40 showed reduced NO₃⁻ / Cl⁻ root selectivity with increased salinity, but Paulsen had lower selectivity over the whole salinity range (0-45 mM). In order to examine if root hydraulic and permeability characterisations accounted for differences between varieties, the root pressure probe was used on excised roots. This showed that the osmotic Lpr was significantly smaller than hydrostatic Lpr, but no obvious difference was observed between the rootstocks. The reflection coefficient (σ) values (0.48-0.59) were the same for both rootstocks, and root anatomical studies showed no obvious difference in apoplastic barriers of the main and lateral roots. Comparing the uptake of Cl⁻ with an apoplastic tracer, PTS (3-hydroxy-5, 8, 10-pyrentrisulphonic acid), showed that there was no correlation between Cl⁻ and PTS transport. These results indicated that by-pass flow of salts to the xylem is the same for both rootstocks (10.01±3.03 % and 12.1±1.21 %) and hence pointed to differences in membrane transport to explain difference in Cl⁻ transport to the shoot. ³ ⁶Cl⁻ fluxes across plasma membrane and tonoplast of K 51-40 and Paulsen roots showed that ³ ⁶Cl⁻ influx in root segments of Paulsen was greater than K 51-40 over the first 10 minutes. Unidirectional influx within 10 min loading time showed increases with increases in the external concentrations in both rootstocks but Paulsen had higher influx rate when compared to K 51-40. This appeared to be due to a greater Vmax. There was no significant difference in Km. It was shown that ³ ⁶Cl⁻ accumulation and transport rate to the shoot of K 51-40 was higher than that of Paulsen. Compartmental analysis of ³ ⁶Cl⁻ efflux from intact roots confirmed that the difference in influx observed between the rootstocks was consistent with the results obtained for excised roots, although the values were not exactly the same. It was also shown that the main root of Paulsen had greater contribution to ³ ⁶Cl⁻ uptake than lateral roots. ³ ⁶Cl⁻ fluxes by lateral roots were not significantly different between the rootstocks. Cl⁻ and Na⁺ distribution patterns in different root cell types were determined using the X-ray microanalysis technique. It was shown that Cl⁻ content in the hypodermis and cortical cells was higher than the other cell types in both rootstocks, but overall Cl⁻ content in the root of Paulsen was higher than K 51-40. The pericycle of the main root of Paulsen accumulated more Cl⁻ than K 51-40. It was concluded that Cl⁻ loading to the xylem was different in the rootstocks and Paulsen tended to prevent the xylem Cl⁻ loading process. Lateral roots also displayed opposite behaviour consistent with flux analysis. Membrane potential difference (PD) of the cortical cells showed a rapid and transient depolarization by adding 30 mM NaCl in both rootstocks that was followed by a gradual hyperpolarization. Depolarizations caused by 30 mM Choline-Cl, Na-MES and NaCl measured by the root surface potential method showed that Choline-Cl in K 51-40 and Na-MES in Paulsen caused greater depolarization than that of Na-MES in K 51-40 and Choline-Cl in Paulsen respectively. Assuming that PD measured in this method was the trans-root potential (TRP), it was concluded that the higher depolarization by Choline-Cl in K 51-40 can be due to higher Cl⁻ efflux rate to the xylem. Two different mechanisms were also detected for Cl⁻ transport: HATS which was observed in the range of 0.5-5 mM and a LATS in the range of 10-30 mM of the external NaCl concentration. This was consistent with the concentration dependence of Cl⁻ influx. In conclusion, evidence obtained from different experiments of this study indicated that in the grapevine rootstocks (Paulsen and K 51-40) Cl⁻ was mostly transported through the symplastic pathway. From ECl values determined for the rootstocks by the Nernst equation, a proton-driven transport system was responsible for Cl⁻ transport in both the HATS and LATS range of external NaCl concentrations. The rate of Cl⁻ transport from the root to shoot (xylem loading) was the major difference in Cl⁻ transport between the rootstocks in terms of salinity tolerance. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1339051 / Thesis (Ph.D.) -- University of Adelaide, School of Agriculture, Food and Wine, 2008
430

A comparative study of Cl⁻ transport across the roots of two grapevine rootstocks, K 51-40 and Paulsen, differing in salt tolerance.

Abbaspour, Nasser January 2008 (has links)
Soil salinity is one of the major abiotic stresses that decreases agricultural crop production through imposition of both ionic and osmotic stresses. The accumulation of Na⁺ and Cl⁻ in the cytosol to toxic levels inhibits metabolism. Unlike Na⁺, less is known about Cl⁻ uptake and transport in plants. Grapevine is moderately sensitive to salinity and accumulation of toxic levels of Cl⁻ in leaves is the major reason for salt-induced symptoms. In this study Cl⁻ uptake and transport mechanism(s) were investigated in two grapevine (Vitis sp.) rootstock hybrids differing in salt tolerance: 1103 Paulsen (salt tolerant) and K 51-40 (salt sensitive). Increased external salinity caused high Cl⁻ accumulation in shoots of the salt sensitive K 51-40 in comparison to Paulsen. Measurement of ¹ ⁵ NO₃⁻ net fluxes under high salinity showed that by increasing external Cl⁻ concentrations K 51-40 roots showed reduced NO₃⁻ accumulation. This was associated with increased accumulation of Cl⁻. In comparison to Paulsen, K 51-40 showed reduced NO₃⁻ / Cl⁻ root selectivity with increased salinity, but Paulsen had lower selectivity over the whole salinity range (0-45 mM). In order to examine if root hydraulic and permeability characterisations accounted for differences between varieties, the root pressure probe was used on excised roots. This showed that the osmotic Lpr was significantly smaller than hydrostatic Lpr, but no obvious difference was observed between the rootstocks. The reflection coefficient (σ) values (0.48-0.59) were the same for both rootstocks, and root anatomical studies showed no obvious difference in apoplastic barriers of the main and lateral roots. Comparing the uptake of Cl⁻ with an apoplastic tracer, PTS (3-hydroxy-5, 8, 10-pyrentrisulphonic acid), showed that there was no correlation between Cl⁻ and PTS transport. These results indicated that by-pass flow of salts to the xylem is the same for both rootstocks (10.01±3.03 % and 12.1±1.21 %) and hence pointed to differences in membrane transport to explain difference in Cl⁻ transport to the shoot. ³ ⁶Cl⁻ fluxes across plasma membrane and tonoplast of K 51-40 and Paulsen roots showed that ³ ⁶Cl⁻ influx in root segments of Paulsen was greater than K 51-40 over the first 10 minutes. Unidirectional influx within 10 min loading time showed increases with increases in the external concentrations in both rootstocks but Paulsen had higher influx rate when compared to K 51-40. This appeared to be due to a greater Vmax. There was no significant difference in Km. It was shown that ³ ⁶Cl⁻ accumulation and transport rate to the shoot of K 51-40 was higher than that of Paulsen. Compartmental analysis of ³ ⁶Cl⁻ efflux from intact roots confirmed that the difference in influx observed between the rootstocks was consistent with the results obtained for excised roots, although the values were not exactly the same. It was also shown that the main root of Paulsen had greater contribution to ³ ⁶Cl⁻ uptake than lateral roots. ³ ⁶Cl⁻ fluxes by lateral roots were not significantly different between the rootstocks. Cl⁻ and Na⁺ distribution patterns in different root cell types were determined using the X-ray microanalysis technique. It was shown that Cl⁻ content in the hypodermis and cortical cells was higher than the other cell types in both rootstocks, but overall Cl⁻ content in the root of Paulsen was higher than K 51-40. The pericycle of the main root of Paulsen accumulated more Cl⁻ than K 51-40. It was concluded that Cl⁻ loading to the xylem was different in the rootstocks and Paulsen tended to prevent the xylem Cl⁻ loading process. Lateral roots also displayed opposite behaviour consistent with flux analysis. Membrane potential difference (PD) of the cortical cells showed a rapid and transient depolarization by adding 30 mM NaCl in both rootstocks that was followed by a gradual hyperpolarization. Depolarizations caused by 30 mM Choline-Cl, Na-MES and NaCl measured by the root surface potential method showed that Choline-Cl in K 51-40 and Na-MES in Paulsen caused greater depolarization than that of Na-MES in K 51-40 and Choline-Cl in Paulsen respectively. Assuming that PD measured in this method was the trans-root potential (TRP), it was concluded that the higher depolarization by Choline-Cl in K 51-40 can be due to higher Cl⁻ efflux rate to the xylem. Two different mechanisms were also detected for Cl⁻ transport: HATS which was observed in the range of 0.5-5 mM and a LATS in the range of 10-30 mM of the external NaCl concentration. This was consistent with the concentration dependence of Cl⁻ influx. In conclusion, evidence obtained from different experiments of this study indicated that in the grapevine rootstocks (Paulsen and K 51-40) Cl⁻ was mostly transported through the symplastic pathway. From ECl values determined for the rootstocks by the Nernst equation, a proton-driven transport system was responsible for Cl⁻ transport in both the HATS and LATS range of external NaCl concentrations. The rate of Cl⁻ transport from the root to shoot (xylem loading) was the major difference in Cl⁻ transport between the rootstocks in terms of salinity tolerance. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1339051 / Thesis (Ph.D.) -- University of Adelaide, School of Agriculture, Food and Wine, 2008

Page generated in 0.0598 seconds