• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 28
  • 10
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 119
  • 46
  • 42
  • 19
  • 19
  • 17
  • 16
  • 16
  • 14
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The role of geology, geomorphology, climate and vegetation, in controlling spatial and temporal changes in groundwater discharge from weathered crystalline basement aquifers in southwestern Australia /

Rutherford, Jasmine Lee. January 2005 (has links)
Thesis (Ph.D.)--University of Western Australia, 2006.
32

A distributed conceptual model for stream salinity generation processes : a systematic data-based approach /

Bari, Mohammed A. January 2005 (has links)
Thesis (Ph.D.)--University of Western Australia, 2006.
33

Testes de aplicabilidade de sonda de eletrorresistividade na avaliação de salinização secundária de solos / Applicability tests of a resistivity probe to evaluate secondary salinization of soils

Patricia Braga Toledo Iezzi 25 February 2008 (has links)
Os métodos geofísicos têm sido utilizados para definir a extensão em área e em profundidade de contaminações causadas por compostos orgânicos ou inorgânicos, uma vez que tais contaminações alteram as propriedades físicas do meio. Este trabalho abrangeu o desenvolvimento de ensaios realizados em laboratório e em campo para verificar a aplicabilidade de minissonda de resistividade, que utiliza quatro eletrodos dispostos segundo o arranjo Wenner em conjunto com uma fonte de corrente e dois multímetros, o que torna possível a execução de uma medida convencional de resistividade em diferentes profundidades à medida que a sonda é cravada no solo. Uma eventual aplicação desta minissonda seria sua utilização na avaliação de salinização secundária de solos. A agroindústria, principalmente no estado de São Paulo, vem utilizando cada vez mais estufas para a produção de frutos e flores, principalmente. Os processos de irrigação, e o microclima criados dentro das estufas, têm causado o incremento da quantidade de sais no solo, uma vez que o solo não é naturalmente lixiviado pela água da chuva. Isto pode comprometer a utilização dessas estufas para fins ligados à agricultura. A salinidade refere-se à presença de sais dissolvidos no solo, na água superficial e subterrânea. A salinização do solo pode estar ligada a processos naturais como a pedogênese do solo ou ao clima local por exemplo, ou pode ter origem secundária, podendo estar relacionada às atividades antrópicas capazes de alterar esta propriedade do meio. O presente trabalho visou testar a aplicabilidade da minissonda de resistividade para a avaliação da salinização secundária de solos. O trabalho foi inicialmente desenvolvido em laboratório, onde foram efetuados experimentos em amostras de solo saturadas com soluções de NaCl em diferentes concentrações. Os resultados obtidos nestes ensaios utilizando um meio arenoso totalmente saturado mostraram que a condutividade elétrica aumenta em função da concentração de NaCl utilizado na solução. Observou-se ainda a relação inversa entre a resistividade aparente calculada e a concentração da solução utilizada. Os ensaios de campo foram executados em duas estufas distintas, que utilizam diferentes técnicas de cultivo, localizadas nos municípios de Holambra e Elias Fausto, e não indicaram correlação entre a condutividade elétrica calculada a partir das resistividades obtidas e a condutividade elétricas medidas em laboratório, nas amostras de solo encaminhadas para análise. Foram analisados também os íons Al, Ba, Ca, Cr, Co, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Zn, e cloretos. Nas duas estufas observa-se correlação entre as condutividades obtidas e alguns dos íons analisados. As diferenças observadas entre as condutividades elétricas calculada e medida, podem estar relacionadas às condições de campo, uma vez que nas duas estufas observou-se porções porosas no solo, a presença de solo argiloso nas estufas, principalmente em Holambra, e à presença dos metais presentes no solo local, conforme mostram os resultados analíticos obtidos. Adicionalmente, durante a realização dos ensaios em laboratório o meio encontrase totalmente saturado, o que não ocorreu nos ensaios realizados em campo, uma vez que na estufa em Holambra o solo estava úmido e na estufa em Elias Fausto apresentava-se bastante seco. As diferenças de umidade também podem ter interferido nos resultados obtidos. Os trabalhos realizados evidenciaram que a minissonda pode ser aplicada para medida de resistividade in situ, porém, seu uso deve se limitar à avaliação de áreas onde o solo é mais arenoso e pouco compactado. / Geophysical methods have been used to define the extension and depth of contaminations caused by organic and inorganic compounds spills. This is because those contaminations change the physical properties of the underground materials. This study presents the tests results performed both in laboratory and field of a small probe that allows the in situ measurement of the resistivity, avoiding the need of installation of monitoring wells and allowing low cost and fast measurements. It consists in a probe with four electrodes according a Wenner array, a current source and two multimeters. It makes possible to take in situ resistivity measurements in different depths while the probe is inserted in the soil. An eventual application for that mini probe would be for evaluation of secondary salinity of the soil. The agro industry, mainly in the São Paulo state, has been using greenhouses to increase the production mainly of fruits and flowers. The irrigation processes used and the microclimate generated in the greenhouse have been causing an increasing salt quantity in the soil. This happens because the natural lixiviation (by the rain) does not occur. That increasing salinization may prejudice the use of such greenhouses for agricultural purposes. Salinization refers to a build up of salts in soil, in the superficial water and groundwater. It may be due to natural process, like e.g. the pedogenesis or the local climate, or it may have a secondary origin, normally related to antropic activities that are capable to modify such property. This study aimed at testing the applicability of the resistivity mini probe to evaluate the secondary salinization of the soil. It was performed firstly in laboratory, using soil samples saturated with NaCl solutions of different concentrations. The results of those experiments showed that the electrical conductivity increases as function of the NaCl concentration and, naturally, the inverse relation with the apparent and calculated resistivity. Field tests were performed in two different greenhouses where distinct techniques are used. They are located in the Holambra and Elias Fausto municipalities. These tests did not indicate correlation between the electrical conductivity calculated from the measures resistivities and the electrical conductivities measured in the soil samples sent to the laboratory. In those samples the ions Al, Ba, Ca, Cr, Co, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Zn, and chloride were also analyzed. For both greenhouses, some ions presented correlation with the electrical conductivities. The observed differences between the electrical conductivity calculated and measured may be related to the field conditions, since that in both greenhouses the soil was porous (avoiding the perfect coupling of the probe), the presence of clay that sticks in the probe between the electrodes, or the presence of metals in the soil, shown by the chemical analysis. In addition, during the laboratory tests, the soil was completely saturated, what was not the case in the field. In Holambra the soil was wet and Elias Fausto it was completely dry. So, the humidity differences may have interfered in the results. Finally, the tests results showed that the mini probe may be applied to measure the resistivity in situ but, its use may be limited to the evaluation of areas where the soil is more sandy and relatively loose.
34

Estudo e modelagem da transferência de água e de solutos em um solo aluvial de cultivo de vazante no Estado de Pernambuco / not available

Lucyana Vieira de Mélo 10 April 2001 (has links)
Uma área de 9 m x 28 m, localizada às margens do açude Cajueiro, no município de Tuparetama - PE, foi instrumentada com o objetivo de estudar os processos de transferência de água e de solutos. O solo local é heterogêneo, sendo constituído por um solo aluvial de características arenosas a franco arenosas. A área, localizada na região semi-árida e utilizada para o cultivo de vazante, está sujeita a altas taxas de evaporação e aos efeitos cíclicos de subida e rebaixamento do nível d\'água do açude. A caracterização física do solo foi feita com base em ensaios de prospecção e granulometria. A caracterização hidráulica foi realizada com base em um ensaio de drenagem interna realizado no centro da área e as concentrações de sais totais presentes no solo foram obtidas pro meio de ensaios de determinação dos sais solúveis em extratos de saturação. Os parâmetros hidráulicos foram obtidos ajustando-se os dados do ensaio de drenagem interna e de monitoração de campo a diversos modelos analíticos, utilizando-se o programa RETC. Os parâmetros hidrodispersivos foram obtidos ajustando-se os dados da curva de eluição experimental aos modelos CDE e CDE-MIM, utilizando-se o programa CXTFIT 2.0. O programa HYDRUS-2D foi utilizado para simular o fluxo de água e o transporte de solutos num domínio de fluxo bi-dimensional com 28 m de comprimento e 2,0 m de profundidade, incluindo a zona saturada e não saturada. O programa simulou bem o comportamento do fluxo medido no campo através da instrumentação. Os valores simulados de umidade se ajustaram melhor aos valores medidos na estação localizada no centro da área instrumentada. Para as camadas superficiais os valores simulados de umidade foram superestimados o que pode estar associado à variabilidade espacial dos parâmetros hidráulicos ou à influência de fluxo preferencial. A simulação do transporte de solutos, feita em termos de sais totais, permitiu concluir que as altas taxas de evaporação, associadas às concentrações de sais totais presentes no solo, tendem a provocar a salinização das camadas superficiais da área estudada. / An area of 9 m x 28 m, located in the banks of the Cajueiro reservoir, in the municipal district of Tuparetama, Pernambuco, has been instrumented with the objective of studying the processes of water flow and solute transport. The local soil is heterogeneous, being constituted by an alluvial soil of sandy characteristics. The area, located in the semi-arid region and used for the agriculture, is subjected to high evaporation rates and cyclical effects of rising and lowering of the water level in the reservoir. The physical characterization of the soil has been undertaken based on sample extraction and texture analysis. The hydraulic characterization has been based on an internal drainage experiment accomplished in the center of the area and the concentrations of present total salts have been obtained from saturation extracts. The hydraulic parameters have been obtained fitting the internal drainage experiment data and the field data to several analytic models, using the program RETC. The hydrodispersive parameters have been obtained fitting the data of breakthrough curves to the models CDE and CDE-MIM, using the program CXTFIT 2.0. The program HYDRUS-2D have been used to simulate the water flow and solute transport in a two-dimensional domain with 28 m of length and 2,0 m of depth, including the saturated and unsaturated zones. The program has simulated well the behavior of the flow measured in the field. The simulated values of water content agreed better with the measured values in the center of the studied area. For the superficial layers the simulated values of water content have been overestimated, which can be associated to both the spacial variability of the hydraulic parameters and the influence of preferential flow. The simulation of the solutes-transport, in terms of total salts, has shown that the high evaporation rates in association to the salts presents in the soil promote the salinization of the superficial layers of the studied area.
35

Effekter av salthalter och ljusexponering på zooplanktonpopulationer / Effects of salinity and light exposure on zooplankton communities

Lindell, Arielle January 2022 (has links)
Abstract Eutrophication and salinization are both major threats to lake ecosystems and the contaminants can alter the structure of freshwater lake ecosystems, resulting in a loss of biodiversity and ecosystem services. Zooplankton and phytoplankton are key components in all aquatic ecosystems as they maintain a healthy quality of the water and they are also an important part of the food chain. Studies show that eutrophication and salinization have severe negative effects on the zooplankton community. This study compares zooplankton communities in 36 mesocosms of eutrophicated waters with nine treatments of salinity and light exposure. The dataset was provided by Associate Professor Lovisa Lind-Eirell, using a randomized design with three levels salt concentrations (15, 250, and 1000 mg of chloride/L of highly eutrophicated waters, in combination with three levels (10%, 35% and 70%) of ambient sunlight. The hypothesis and expected results were a significant decline in zooplankton species richness and population sizes, in treatments with high salinity and low light exposure. The hypothesis was partly correct as nauplii and copepod populations declined treatments of high salinity, whereas cladocerans and rotifers seem to have a saline tolerance which corresponds with other studies. More research is required regarding the combined effects pollutants have on our environment and our ecosystem services. If we wish to keep freshwater ecosystems healthy, prevent further loss of diversity and keep utilizing ecosystem services such as drinking water of good quality, a change of human actions is necessary. More research of interactive effects is needed to better understand the extent of the damage to freshwater ecosystems. Actions to prevent further loss of biodiversity and ecosystem services are necessary but the threats have been acknowledged and finding solutions is currently a work in progress on a global scale. / Sammanfattning Idag är övergödning och förhöjda kloridnivåer två av de största hoten mot ekosystemen i sötvattensjöar. Föroreningarna kan förändra strukturen i dessa ekosystem, vilket leder till förlust av ekosystemtjänster, såsom drickbart vatten. Zooplankton och växtplankton är nyckelkomponenter i alla akvatiska ekosystem eftersom de upprätthåller vattenkvaliteten och utgör en viktig del av näringskedjan. Studier visar att övergödning och förhöjda kloridnivåer har negativa effekter på zooplankton. Denna studie jämför zooplankton i 36 vattentankar med eutrofa vatten med nio behandlingar av varierande nivåer av salthalt och ljustillgänglighet. Datauppsättningen tillhandahölls av docent Lovisa Lind-Eirell på Karlstad universitet och utgjordes av en randomiserad design som bestod av tre olika saltkoncentrationer (15, 250 och 1000 mg klorid/L) av starkt eutrofierade vatten,  i kombination med tre ljusnivåer (10 %, 35 % och 70 %). Hypotesen och det förväntade resultatet var en signifikant minskning av både arter och populationer av zooplankton i behandlingar med hög salthalt och låg ljustillgänglighet. Hypotesen var delvis korrekt eftersom nauplii och copepoda populationer minskade i behandlingar med höga kloridhalter, medan cladocera och rotifera verkade ha en tolerans mot höga kloridhalter. Mer forskning om interaktiva effekter behövs för att bättre förstå omfattningen av skadorna på ekosystemen i våra sötvatten. Åtgärder för att förhindra ytterligare förlust av biologisk mångfald och ekosystemtjänster är nödvändiga, och att hitta lösningar på dessa problem pågår för närvarande på global skala.
36

Freshwater Salinization Alters the Biology and Ecology of Zooplankton.

Huber, Eric D. January 2022 (has links)
No description available.
37

Levels of Dissolved Solids Associated with Aquatic Life Effects in Headwater Streams of Virginia's Central Appalachian Coalfield Region

Timpano, Anthony J. 25 April 2011 (has links)
Benthic macroinvertebrate communities in headwater streams influenced by Appalachian coal mining often differ from communities in minimally distrubed streams. Total dissolved solids (TDS) associated with mining have been suggested as stressors to these communities. In studies of such streams conducted to date, both non-TDS stressors and elevated TDS have been present as potential influences on biota. Here the association between dissolved salts and benthic macroinvertebrate community structure was examined using a family-level multimetric index and genus-level taxa sensitivity distributions. Test sites were selected along a gradient of elevated TDS, with non-TDS factors of reference quality. Virginia Stream Condition Index (VASCI) scores were regressed against log-transformed measures of TDS, specific conductance, and sulfate (SO42-) using ordinary least squares and quantile regression techniques. Biological effects, as defined by VASCI scores indicating stressed or severely stressed conditions, were observed with increasing probability from 0% at ≤ 190 mg/L TDS to 100% at ≥ 1,108 mg/L TDS, with 50% probability of effects observed at 422 mg/L TDS. Associations between water quality measures and biological condition were variable, with approximately 48% of the variance explained by TDS. Genus-level analysis using a field sensitivity distribution approach indicated 95% of reference genera were observed at sites with TDS ≤ 281 mg/L, and 80% of genera were observed at sites with TDS ≤ 411 mg/L. This is evidence that TDS, specific conductance, or SO42- can be used to establish dissolved solids levels for streams influenced by Appalachian coal mining above which aquatic life effects are increasingly probable. / Master of Science
38

SPATIAL VARIABILITY OF SALINITY AND SODIUM ADSORPTION RATIO IN A TYPIC HAPLARGID SOIL.

Alsanabani, Mohamed Moslih. January 1982 (has links)
No description available.
39

The development of a method for the inclusion of salinity effects into environmental life cycle assessments.

Leske, Anthony. January 2003 (has links)
The work presented in this thesis stemmed out of the apparent lack of a method for incorporating salinity effects into environmental life cycle assessments. Salination of the water resources is a well-known problem in South Africa, and is of strategic concern. Any environmental decision support. tool that does not allow the evaluation of salinity effects therefore has limited applicability in the South African context. The starting-point for the work presented in this thesis was to evaluate existing impact categories, and the characterisation models used to calculate equivalency factors for these impact categories, in an attempt to incorporate salinity effects into existing categories and/or characterisation models. The types of effects that elevated (above normal background levels) dissolved salt concentrations have on the natural and man-made environment were evaluated, and it was concluded that, although there was some overlap with existing impact categories, some of the salinity effects could not be described by existing impact categories. It was also concluded that there are clear and quantifiable causal relationships between releases to the environment and salinity effects. A separate salinity impact category was therefore recommended that includes all salinity effects, including; aquatic ecotoxicity effects, damage to man-made environment, loss of agricultural production (livestock and crops), aesthetic effects and effects to terrestrial fauna and flora. Damage to the man-made environment is evaluated in terms of effects on equipment and structures, interference with processes, product quality and complexity of waste treatment, and is used as an indicator for the environmental consequences derived from the caused additional activity in the man-made environment. Once a conceptual model for a separate salinity impact category had been formulated, existing characterisation models were evaluated to determine their applicability for modelling salinity effects. Salination is a global problem, but generally restricted to local or regional areas, and in order to characterise salinity effects, an environmental fate model would be required in order to estimate salt concentrations in the various compartments, particularly surface and subsurface water. A well-known environmental fate and effect model was evaluated to determine if it could be used either as is, or in modified form to calculate salinity potentiaIs for LCA. It was however concluded that the model is not suitable for the calculation of salinity potentials, and it was therefore decided to develop an environmental fate model that would overcome the limitations of existing model, in terms of modelling the movement of salts in the environment. In terms of spatial differentiation, the same approach that was adopted in the existing model was adopted in developing an environmental fate model for South African conditions. This was done by defining a aunit South African catchmenta (including the air volume above the catchment), which consists of an urban surface; rural agricultural soil (and associated soil moisture); rural natural soil (and associated moisture), groundwater (natural and agricultural) and one river with a flow equal to the sum of the flows of all rivers in South Africa, and a concentration equal to the average concentration of each river in the country. A non steady-state environmental fate model (or, hydrosalinity model) was developed that can predict environmental concentrations at a daily time-step in all the compartments relevant to the calculation of salinity potentials. The environmental fate model includes all the major processes governing the distribution of common ions (sodium, calcium, magnesium, sulphate, chloride and bicarbonate) in the various compartments, and described as total dissolved salts. The effect factors used in the characterisation model were based on the target water quality ranges given by the South African Water Quality Guidelines in order to calculate salinity potentials. The total salinity potential is made up of a number of salinity effects potentials, including; damage to man-made environment, aquatic ecotoxicity effects, damage to man-made environment, loss of agricultural production (livestock and crops), aesthetic effects and effects to terrestrial fauna and flora. The total salinity potentials for emissions into the various initial release compartments are shown in the table below. Initial release compartment Atmosphere River Rural natural surface Rural agricultural surface Total salinity potential (kg TDS equJkg) 0.013 0.16 0.03 1.00 The salinity potentiaIs are only relevant to South African conditions, and their use in LeA in other countries may not be applicable. This, in effect, means that the life cycle activities that generate salts should be within the borders of South Africa. It has been recognised that the LCA methodology requires greater spatial differentiation. Salination is a global problem, but generally restricted to local or regional areas on the globe, and it is foreseen that local or regional salinity potentials would need to be calculated for different areas of the earth where salinity is a problem. The LCA practitioner would then need to know something about the spatial distribution of LCA activities in order to apply the relevant salinity potentials. The LCA practitioner should also take care when applying the salinity potentials to prevent double accounting for certain impacts. Currently, this is simple because no equivalency factors exist for common ions, or for total dissolved salts as a lumped parameter. The distribution of salinity potentials, which make up the total salinity potential, appears to be supported by the environmental policies and legislation of South Africa, in which irrigation using saline water is listed as a controlled activity, and subject to certain conditions. The major recommendations regarding further work are focussed on the collection of data that will allow further refinement of the model, and to decrease the uncertainty and variability associated with the results. The values of the published equivalency factors are dependent on the mathematical definition of the local or regional environment, and these values have been calculated for Westem European conditions. Equivalency factors may vary by several orders of magnitude, depending on how the local or regional conditions have been defined. It is therefore recommended that the model developed in this work ultimately be included into a global nested model that can be used to calculate equivalency factors for other compounds, including heavy metals and organic compounds. This would result in equivalency factors for all compounds that are relevant to South Africa. / Thesis (Ph.D.)-University of Natal, Durban, 2003.
40

Growth and nutritive value of lucerne ( Medicago sativa L. ) and Melilotus ( Melilotus albus Medik. ) under saline conditions

Guerrero-Rodriguez, Juan de Dios January 2006 (has links)
Dryland salinity is a major and expanding threat to agricultural land in Australia. Animal production from forages grown on saline land is perhaps its most promising economic use. Glycophytic forage legumes have been evaluated under saline conditions mainly for agronomic characteristics and, to a lesser extent, for nutritive quality to animals. Plant growth and its nutritive quality are interrelated, but a decline in yield in response to salinity may be associated with effects on the chemical constituents of the plant since soil salinity affects plant metabolism. This research aimed to investigate changes in the components of yield and nutritive value of two legumes species. Lucerne ( Medicago sativa ) and Melilotus ( Melilotus albus ) were exposed to different levels of NaCl in the range of 0 to 110 mM NaCl. The research tested the hypothesis that the components of plant nutritive value are not as sensitive to salinity as shoot biomass production since the adaptive mechanisms of the plant lessen harmful effects of the salts. For both plant species, salinity decreased leaf and stem dry matter production, but increased leaf - to - stem ratio. In addition, salinity resulted in earlier flowering in Melilotus. Mineral composition was the most sensitive component of forage quality. Calculated sodium chloride concentrations were up to 125 g / kg DM in lucerne and 39 g / kg DM in Melilotus when irrigated with 110 mM NaCl. The concentrations of calcium and magnesium decreased in both species and approached the marginal range for animal production. Zinc concentration also decreased while potassium decreased in stems of lucerne only. The digestible organic matter ( DOMD ) in response to salinity varied between species. At the highest salt concentration, the whole shoot ( i.e., leaf and stem ) of lucerne decreased up to 4 percentage units while Melilotus increased by 6 percentage units. In lucerne, DOMD was influenced by a high concentration of soluble ash in leaf and stem and, in Melilotus, by an increase in the organic matter content of leaf and a reduction in lignin concentration in stem, which favoured higher digestibility. These results were supported by a histological study in which an increase in starch in Melilotus leaf, and a lower proportion of xylem in relation to parenchyma in stems, was measured. Crude protein concentration was not compromised and, in relation to Melilotus, coumarin concentration did not increase with salinity. In conclusion, the reduction in DM production of species with similar salt tolerance does not necessarily correspond to an equivalent reduction in nutritive value. This research represents the most detailed study into effects of salinity on glycophytic forage legumes. Results show that while some aspects of forage quality ( e.g., minerals composition and energy ) are strongly influenced by salinity, other aspects ( e.g., protein ) remain relatively unaffected. These findings have implications for development of productive grazing systems on saline agricultural land. / Thesis (Ph.D.)--School of Agriculture, Food and Wine, 2006.

Page generated in 0.1462 seconds