61 |
Studies on human salivary IgA with special references to oral streptococciWiderström, Lena. January 1994 (has links)
Thesis (doctoral)--Lunds Universitet, Malmö, 1994. / Added t.p. with thesis statement inserted. Includes bibliographical references.
|
62 |
Mark 8:22-26 Jesus and the use of spittle in a two-stage healing /Bourgeois, Sarah L. January 1999 (has links)
Thesis (Th. M.)--Dallas Theological Seminary, 1999. / Includes bibliographical references (leaves 61-67).
|
63 |
MUC5B from the oral cavity identification of 'insoluble' assemblies and putative regulatory proteolytic events /Wickström, Claes. January 2002 (has links)
Thesis (doctoral)--Malmö University, Sweden, 2002. / Added t.p. with thesis statement inserted. Includes bibliographical references.
|
64 |
Salivary peroxidase systems and lysozyme in defense against cariogenic microorganismsLenander-Lumikari, Marianne. January 1992 (has links)
Thesis--University of Turku, 1992. / Includes bibliographical references.
|
65 |
The efficacy of a novel lubricating system in the management of radiotherapy related xerostomiaKam Yuk-lun. January 2004 (has links)
Thesis (M.D.S.)--University of Hong Kong, 2004. / Also available in print.
|
66 |
Bacteria-agglutinating glycoproteins in human saliva an in vitro study with special reference to Streptococcus mutans /Rundegren, Jan. January 1982 (has links)
Thesis (doctoral)--Umeå Universitet, 1982. / Extra t.p. with thesis statement inserted. Includes bibliographical references (p. 30-45).
|
67 |
Salivary peroxidase systems and lysozyme in defense against cariogenic microorganismsLenander-Lumikari, Marianne. January 1992 (has links)
Thesis--University of Turku, 1992. / Includes bibliographical references.
|
68 |
Interacción entre ácidos fenólicos y la fracción proteica de la saliva / Interaction between phenolic acids and the protein fraction of salivaOrellana Rodríguez, Francisca January 2016 (has links)
Memoria para optar al título profesional de Ingeniero Agrónomo / Los compuestos fenólicos son metabolitos secundarios que se encuentran en algunos alimentos, tales como el vino. Están conformados por dos grandes grupos: Flavonoides y no flavonoides. Los ácidos fenólicos (AF) forman parte del grupo de compuestos fenólicos no flavonoides. Estos AF son de bajo peso molecular y se subagrupan en ácidos benzoicos y ácidos cinámicos. En el subgrupo de los ácidos benzoicos destacan los ácidos gálico (G), vainillínico (V) y protocatéquico (P) y en el subgrupo de los ácidos cinámicos destacan los ácidos ferúlico (F), p-cumárico (CU) y cafeico (CA). Otro ácido fenólico de gran interés enológico es el ácido tánico (T). Los polifenoles afectan las características organolépticas de la uva y el vino, como color, aroma y astringencia. La astringencia se ha descrito como sensación de sequedad provocada por la interacción de los polifenoles con las proteínas salivales.
|
69 |
Transport of IgA in rat salivary glandsSanderson, Christopher Mark January 1986 (has links)
Transport of polymeric immunoglobulin A (plgA) in rat salivary glands has been investigated by combined morphological and biochemical techniques in vivo and in vitro. The distribution of IgA and its cellular receptor secretory component (SC) was observed by immunoperoxidase staining of cryosections from parotid and submaxillary gland, showing serous acinar cells are the site of IgA transport into saliva. Binding of horse radish peroxidase specific IgA to parotid serous acinar cells in vitro, observed by electron microscopy, shows that only the basolateral domain of acinar cells possesses exposed SC. A combination of new cell fractionation methods and standard western blotting techniques shows that SC present on basolateral plasma membrane of parotid acinar cells has a molecular weight (mwt) >100,000 and shows a high affinity for plgA in vitro. The existence of a 73,000 mwt SC occurring with plgA in cellular fractions of parotid gland suggest cleavage of SC occurs prior to secretion. The kinetics of plgA trancytosis was studied using isolated parotid acini. Bound plgA was secreted into the incubation medium as slgA, within thirty minutes of incubation at 37°C. Secretion of plgA was initially rapid but slowed over a 2hr period of incubation at 37°C. In addition to facilitating plgA transport serous acinar cells also synthesise and secrete a diverse range of other salivary proteins which are packaged into secretion granules and secreted directly through the apical plasma membrane. It is improbable that one complex secretory pathway facilitates both bulk secretion of salivary protein and transport of plgA. Therefore secreted proteins must be selectively segregated during secretion into saliva. Secretion of proteins from acinar cells in vitro shows proteins are released at two distinct rates.
|
70 |
Lise celular e ativação da trialisina, proteína citolítica da saliva de Triatoma infestans / Cell lysis and activation of trialysin, cytolic protein from Triatoma infestans salivaMartins, Rafael Miyazawa [UNIFESP] January 2007 (has links) (PDF)
Made available in DSpace on 2015-12-06T23:44:46Z (GMT). No. of bitstreams: 0
Previous issue date: 2007 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / A saliva de artrópodos hematófagos constitui um coquetel farmacológico que atua nos sistemas hemostático, inflamatório e imunológico de seus hospedeiros para auxiliar a aquisição do sangue. O inseto T. infestans, vetor da doença de Chagas, apresenta em sua saliva uma série de moléculas e atividades biológicas já descritas. Dentre elas está a trialisina, uma proteína formadora de poros em bicamadas lipídicas. A trialisina é capaz de lisar/permeabilizar diversos tipos celulares e se propõe que a atividade lítica ocorra pela inserção da porção N-terminal da molécula na membrana das células de tal forma a promover
a formação de um poro. A identificação do gene que codifica a trialisina mostrou que além de ter uma seqüência sinal de secreção, a proteína conteria uma região ácida no seu N-terminal. Este domínio está ausente na proteína madura purificada da saliva e poderia inibir a ação da
trialisina. O objetivo de nosso trabalho foi estudar o mecanismo de lise da trialisina e como se daria a ativação do precursor da trialisina (pró-trialisina) durante a secreção da glândula salivar até a ejeção da saliva.
Para entender o mecanismo de ação da trialisina, já que a expressão heteróloga tanto da pró-trialisina quanto da trialisina apresentou várias dificuldades, utilizamos peptídeos sintéticos baseados na região N-terminal da trialisina madura. Os peptídeos mostraram diferentes especificidades para tripomastigotas de Trypanosoma cruzi, hemácias humanas e Escherichia coli, mas de modo geral, aqueles que continham a maior parte da primeira hélice anfipática predita na trialisina madura apresentaram maior atividade lítica. Todos os peptídeos adquiriam estrutura secundária (α-hélices) na presença de agentes miméticos de membranas. Determinamos as estruturas tridimensionais em solução por Ressonância Magnética Nuclear dos três peptídeos mais ativos e de um pouco ativo e pudemos observar a importância de segmentos distintos de alguns peptídeos nas especificidades dos alvos. 3
Utilizando um anti-soro gerado contra a porção C-terminal da trialisina recombinante (fragmento não-lítico), identificamos a pró-trialisina em extratos de glândulas salivares
contendo APMSF, inibidor da ativação da trialisina. O precursor apresentou menor atividade
lítica contra tripomastigotas. Embora fosse previsto que o precursor teria uma porção pró de
33 resíduos, a diferença entre as bandas em SDS-PAGE da pró-trialisina e trialisina foi de
cerca de 10-15 aminoácidos. Um peptídeo de fluorescência apagada contendo 12 resíduos da
porção pró e 27 do N-terminal da trialisina madura foi sintetizado e observamos que sua
atividade lítica era aumentada quando a serino-protease salivar triapsina ou endoproteinase
Arg-C eram adicionadas, ao mesmo tempo em que o peptídeo alterava sua estrutura,
indicando que a porção acídica é responsável pela inibição da lise. Esses resultados
permitiram caracterizar o papel do N-terminal da trialisina no processo de lise, identificar o
precursor da trialisina na glândula salivar, verificar sua ativação durante a salivação e melhor
elaborar um mecanismo pelo qual a atividade é controlada durante o armazenamento da
proteína nas glândulas salivares. / Hematophagous arthropods contain in their saliva a pharmacological cocktail that acts on the hemostatic, inflammatory and immune systems of their hosts facilitating blood acquisition. The saliva of the insect T. infestans, vector of Chagas' disease, contains several described molecules and biological activities, among which lies trialysin, a protein that forms pores in lipid bilayers. Trialysin can lyse/permeabilize different cell types and it is proposed that lytic activity is achieved by insertion of the N-terminal portion of the molecule onto a cell membrane forming a pore. The identification of the gene that codes for trialysin has shown
that besides a secretion signal sequence, the protein contains an acidic region upstream the mature sequence that is not present in the N-terminus of trialysin purified from saliva and could inhibit the activity of the molecule. Our goal was to study trialysin lytic mechanism and
the activation of its precursor (pro-trialysin) from secretion inside the salivary glands to saliva ejection. To understand trialysin action mechanism, since heterologous expression of either protrialysin
or trialysin was mostly unsuccessful, we used synthetic peptides based on the Nterminal region of mature trialysin that presented different specificities against T. cruzi trypomastigotes, human erythrocytes and E. coli, but those that encompassed most of the first predicted amphipathic helix in trialysin were more active. All peptides folded into α-helices
in the presence of membrane mimetic agents. We solved the tridimensional solution structures
by Nuclear Magnetic Resonance of the three most active peptides and a less lytic one and
observed that distinct regions of some peptides determine target specificity.
Using an anti-serum against the recombinant C-terminal portion of trialysin (non-lytic
fragment), we identified pro-trialysin in salivary glands extracts containing APMSF, inhibitor
of trialysin activation. The lytic activity of the precursor against trypomastigotes is reduced.
5
Although it was predicted that the precursor would contain a pro-region 33-amino acids long,
the difference between the SDS-PAGE trialysin and pro-trialysin bands was around 10-15
residues. Using a fluorescence resonance emission transfer peptide encompassing 12 proregion
amino acids and 27 mature N-terminal residues, after incubation with triapsin or
endoproteinase Arg-C, an increase in lytic activity was observed. At the same time, the
peptide changed its structure indicating this region can impair lysis inside salivary glands.
These results allowed us to characterize the role of trialysin N-terminus in the lysis process,
identify the trialysin precursor in the salivary gland, and determine the mechanism of
activation and lysis control during storage and saliva release. / BV UNIFESP: Teses e dissertações
|
Page generated in 0.0302 seconds