Spelling suggestions: "subject:"bands"" "subject:"hands""
101 |
Dismantling dependency, disarming a boom: petro-politics and the staples state in an era of climate crisisNoble, Paul 29 April 2015 (has links)
This thesis has two central objectives. First, drawing on both the insights contained in the staples approach and the frames and narratives mobilized by contemporary political actors, it attempts to provide insight into the political-economic drivers underpinning the large and growing political influence of the Canadian oil sands. Second, it assesses the effects of this influence on Canadian society and the Canadian state. This influence is observable materially, as with the federal government’s oil sands-oriented policy changes and mobilization of the state security apparatus in its defense, and in less concrete ways, as with the rise of discourses conflating national interest with continued oil sands expansion. This thesis concludes that the effects of this influence have been negative and profound, and in an era of climate crisis, alternatives to Canada’s dominant political economic trends must be urgently sought. / Graduate / paulnoblegreen@gmail.com
|
102 |
Experimental Studies on The Mechanical Behaviour of Cohesive Frictional Granular MaterialsKandasami, Ramesh Kannan January 2016 (has links) (PDF)
Thss thesis presents the results of an experimental programme on the static mono-tonic response of cohesive-frictional granular materials. The purpose of this experimental programme was to gain insight into the mechanical behaviour of uncemented sands, and sands with small percentages of cementation. With this objective in sight, the research involved understanding and delineating the e ects of four variables: the intermediate principal stress, stress inclination, cohesion (or cementation), and particle morphology. The hollow cylinder torsion (HCT) apparatus, which allows control over both the magnitude and direction of principal stresses, was used in this study to carry out a series of elemental tests on the model materials. The test results were analysed in a plasticity theory based framework of critical state soil mechanics.
Drained and undrained HCT tests were conducted on a model angular sand to understand the combined influence of intermediate principal stress ratio (b) and principal stress inclination ( ). Sand specimens were reconstituted to a given density and confining pressure, and were sheared to large strains towards a critical state. The stresses at the critical state with varying `b' were mapped on an octahedral plane to obtain a critical state locus. The shape of this locus closely resembles a curved triangle. Also these specimens showed increased non-coaxiality between the stress and strain increment directions at lower strains. This non-coaxiality decreased significantly, and the response at the critical state was by and large coaxial. The effect of `b' and ` ' on the flow potential, phase transformation, and critical state was also investigated. At phase transformation, ` ' plays a more dominant role in determining the flow potential than `b'. The shape and size of the critical state locus remained the same immaterial of the drainage conditions.
Next, small amounts of cohesion (using ordinary Portland cement) was added to this sand ensemble to study the mechanical behaviour of weakly cemented sands. The peak in the stress strain curve was used to signal the breakdown of cohesion further leading to a complete destructuring of the sand at the critical state. The response of the cemented sand changes from brittle to ductile with increase in confining pressure, while reverses with increase in density and `b'. Stress-dilatancy response for the weakly cemented materials shows the non coincidence of peak stress ratio and maximum value of dilation unlike purely frictional materials. This mismatch in peak stress ratio and maximum dilation diminishes with increase in confining pressure. The peak stress (cemented structured sand) locus and the critical state (destructured) locus were constructed on the octahedral plane from these HCT tests. The critical state locus of the cemented sand when it is completely destructured almost coincides with the critical state locus of the clean sand. Using this experimental data set, some important stress-dilatancy relationships (like Zhang and Salgado) and failure criteria (Lade's isotropic single hardening failure criteria and SMP failure criteria) were benchmarked and their prediction capabilities of such models were discussed in detail.
The effect of particle morphology was also investigated in this testing programme. Rounded glass ballotini and angular quartzitic sand which occupy two extreme shapes were selected, and a series of HCT tests at different `b' values were con-ducted. A larger sized CS locus was obtained for angular particles and it encompassed the critical state locus of the spherical glass ballotini. Spherical particles exhibit a predominantly dilative behaviour, however present a lower strength at the critical state. The mobilization of strength as a result of rearrangement of angular particles and the consequent interlocking is higher. Even with contractive behaviour which is reflected in the higher values of critical state friction angle and the larger size of the yield locus for sand.
Finally, a series of unconfined compression tests were performed to understand if there exists a scale separation in cohesive frictional materials. Specimens were reconstituted to a range of sizes while maintaining a constant aspect ratio and density. As the specimen size increased, the peak strength also increases, counter to an idea of a generalized continuum for all model systems. The observed secondary length scale (in addition to the continuum length scale) is obverse to the one observed in quasi-brittle materials such as concrete, rock. In order to ascertain the reason behind this phenomenon, a series of tomography studies were carried out on these contact-bound ensembles. The presence of cohesion between the grains brings about an \entanglement" between the grains, which contributes to increase in strength, with increase in the size of the sample. This in e ect bringing forth a second length scale that controls the behaviour of these cohesive frictional granular materials.
This experimental data set provides quantification of various aspects of the me-chanical response of both cemented and uncemented granular materials under myriad stress conditions. This data set is also extremely useful in developing and bench-marking constitutive models and simulations.
|
103 |
Chemical fingerprinting of naphthenic acids by comprehensive two-dimensional gas chromatography mass spectrometry at reclamation sites in the Alberta oil sandsBowman, David Thomas January 2017 (has links)
The processing of bitumen in the Athabasca oil sands region (AOSR) produces extensive volumes of oil sands process-affected water (OSPW) and tailings, which are stored within tailings ponds and settling basins to promote the consolidation of solids and the recycling of water. Oil sands operators are actively investigating dry and wet reclamation strategies in order to reduce their inventory of tailings and return disturbed land back to its original state. An important component of the reclamation of tailings is understanding the environmental fate of naphthenic acids (NAs), which are considered the most toxic constituents of OSPW and tailings. However, since NAs exist as a complex mixture comprised of thousands of compounds from dozens of chemical classes, the characterization of NAs within environmental samples poses significant challenges to analytical chemists.
This dissertation is focused on the characterization of naphthenic acids by comprehensive two-dimensional gas chromatography coupled to mass spectrometry (GC×GC/MS). GC×GC/MS offers unparalleled chromatographic separation and peak capacity and has been used in recent years to resolve individual constituents within complex mixtures, including structural isomers. Since the biodegradation and toxicity of NAs is structure-specific and can vary between structural isomers, the profiling of individual NAs by GC×GC/MS is expected to enhance the monitoring of NAs within environmental samples impacted by oil sands activity. In this thesis, GC×GC coupled with time-of-flight mass spectrometry (TOFMS) was used to structurally elucidate a number of ‘unknown’ classical and sulfur-containing naphthenic acids by interpretation of their electron ionization (EI) mass spectra and, if available, confirmed by comparison with the spectra of references standards. GC×GC/TOFMS was also utilized as a fingerprinting tool to assess the temporal and spatial variability at two reclamation sites in the AOSR: Syncrude’s Sandhill Fen reclamation site and Base Mine Lake. Lastly, a methodology was developed which coupled GC×GC with a high resolution quadrupole time-of-flight mass spectrometer (QTOFMS) for the improved profiling of NAs. GC×GC/QTOFMS is advantageous for the monitoring of NAs since it can provide useful fingerprints via isomer distributions, differentiate NAs from several chemical classes, and provide a global overview of the elemental compositions (assigned by mass accuracy) within NA mixtures. / Thesis / Doctor of Philosophy (PhD)
|
104 |
Energy uncertainty: the effects of oil extraction on the Woodland Cree First Nation2015 December 1900 (has links)
One of the most pressing and polarizing issues in Western Canada today, and for many First Nations groups in particular, is the oil sands of Alberta. My thesis is entitled Energy Uncertainty:
The Effects of Oil on the Woodland Cree First Nation. My research is focused on understanding how long-term energy extraction affects the past, present, and futures of the members the Woodland Cree First Nation (WCFN) who are demanding an active role in the planning and consultation processes that affect their lives and their traditional lands. I have found that the energy consultation process is not working for the interests of the WCFN and the effects of oil extraction in this community are examples of how and why it is not working.
During the summer of 2013 I spent nine weeks in the WCFN community and used three methods of research: participant observation, interviews, and literature analysis. I completed 22 interviews during my field work research, and made use of nine transcribed interviews with WCFN elders collected in 1995 by Rhonda Laboucan. I used a grounded approach to the content and thematic analysis of my interview and field note data.
My thesis is guided by a political ecological approach because this framework challenged me to look at this subject from many angles and perspectives. This approach has kept my research from being narrowly focused on abstracted or stereotypical aspects of the energy extraction process which I cannot understand without attention to its social, political, environmental, and spatial aspects.
The body of my thesis includes three chapters which explore:
• The practical realities of energy consultation and its relation to Treaty Eight and Traditional Knowledge.
• The complex relationship between temporality, fatalism, and the effects of the oil industry on the people, land, and animals of the WCFN.
• A detailed ethnographic description of the events and processes that followed a contaminated water spill on the WCFN traditional land.
My key findings include: consultation is not working for the interests of the WCFN; oil is impacting the animals, environment, and WCFN community; oil-related spills are affecting (but not being dealt with in a way that respects) WCFN people or land; and there are problems with collection, interpretation, dissemination, and even access to energy extraction and consultation information.
My research helps to fill the gaps in our understanding of the complex effects of long-term energy extraction on small communities, in particular the impacts of oil and oil sands development in a small First Nations community context.
|
105 |
Evaluation of the immobilized soil bioreactor for treatment of naphthenic acids in oil sands process watersMcKenzie, Natalie 20 June 2013 (has links)
Extraction of bitumen from Alberta oil sands produces 2 to 4 barrels of aqueous tailings per barrel of crude oil. Oil sands process water (OSPW) contains naphthenic acids (NAs), a complex mixture of carboxylic acids of the form CnH2n+ZOx that are persistent and toxic to aquatic organisms. Previous studies have demonstrated that aerobic biodegradation reduces NA concentrations and OSPW toxicity; however, treatment times are long.
The objective of this study was to evaluate the feasibility of an immobilized soil bioreactor (ISBR) for treatment of NAs in OSPW and to determine the role of ammonium and ammonium oxidizing bacteria (AOB) in NA removal. ISBRs have been used to successfully remediate water contaminated with pollutants such as pentachlorophenol and petroleum hydrocarbons. A system of two ISBRs was operated continuously for over 2 years with OSPW as the sole source of carbon. Removal levels of 30-40% were consistently achieved at a residence time of 7 days, a significant improvement compared to half-lives of 44 to 240 days reported in the literature. However, similar to biodegradation experiments in the literature, a significant portion (~60%) of the NAs was not degraded.
The role of AOB in NA removal was investigated by decreasing ammonium concentration and inhibiting AOB activity with allylthiourea, neither of which significantly affected removal, indicating that AOB did not enhance NA removal. Furthermore, high AOB populations actually inhibited the removal of a simple NA surrogate. Therefore, a moderate ammonium concentration of 0.3 g/L is recommended. NA degradation occurred with nitrate as the sole nitrogen source, however, removal levels were lower than those achieved with ammonium.
Exploratory studies involving ozonation or biostimulation were conducted with the aim of increasing NA removal. Ozonation decreased NA concentration by 94% and total organic carbon (TOC) by 6%. Subsequent ISBR treatment removed ~30% of the remaining TOC. Addition of a NA surrogate increased heterotrophic NA-degrading populations due to the increase in available carbon, resulting in a significant increase in NA removal levels. However, use of a surrogate may result in a population that is only adapted to degradation of the NA surrogate. / Thesis (Master, Chemical Engineering) -- Queen's University, 2013-06-20 14:53:47.498
|
106 |
Geotechnical Behavior of In-Line Thickened Oil Sands TailingsSilawat, Jeeravipoolvarn 06 1900 (has links)
This research is an experimental, field and numerical study of the sedimentation and consolidation of in-line thickened oil sands fine tailings. In-line thickening is a process that adds flocculant and coagulant into a modified tailings pipeline in a multi stage fashion to improve the dewatering behaviour of oil sands fine tailings cyclone overflow.
The parent untreated cyclone overflow, in-line thickened tailings and sheared in-line thickened tailings were investigated in the laboratory. In-line thickened tailings were produced in the laboratory using the same process as in the field project and sheared in-line thickened tailings were prepared by shearing the thickened tailings with a specified shearing effort to simulate tailings transportation. A combination of hindered sedimentation tests, compressibility standpipe tests and large strain consolidation tests with vane shear tests was then used to capture a full range of sedimentation, consolidation and shear strength characteristics for these materials. Results show that the in-line thickening process significantly improves hydraulic conductivity and undrained shear strength of the fine tails. Shearing damages some of the floc structure but does not cause the material to fully return to the original state of the cyclone overflow.
The laboratory data of the in-line thickened tailings was compared with field performance at two in-line thickened tailings pilot scale ponds and with a validation standpipe test by utilizing a developed finite strain consolidation model. Good agreements were obtained between the field performance, the laboratory test results and the validation standpipe test. These good agreements confirmed the validity of the laboratory determined geotechnical parameters and of the developed numerical model and indicated that it is possible to model large scale field performance with small scale laboratory tests.
Finally, composite tailings was made from the in-line thickened tailings and was found to have a similar segregation boundary to that of gypsum treated composite tailings made with mature fine tailings but had a much higher hydraulic conductivity and shear strength which were inherited from the flocculated fines. / Geotechnical Engineering
|
107 |
Investigating the phytotoxicity of oil sands tailings water formed during atmospheric fines drying processing2013 May 1900 (has links)
Oil sands operators are being faced with the challenge of reclaiming the large volumes of slurry tailings created during oil sands processing. New regulations mandate that operators must minimize fluid tailings by capturing fines in dedicated disposal areas, leading to a ‘trafficable’ or solid deposit. Adding a polyacrylamide polymer to the tailings and thinly spreading them over a sloped disposal area (a process developed by Shell Canada Energy known as the atmospheric fines drying or AFD process) has been shown to enhance the dewatering of tailings which leads to a dry deposit at a much faster rate than traditional methods.
Hydroponic experiments using the emergent aquatic macrophytes cattail (Typha latifolia L.) and common reed (Phragmites australis (Cav.) Trin. ex Steud.) were conducted to investigate the phytotoxicity of waters formed during AFD processing. The phytotoxicity of AFD release waters was compared to the phytotoxicity of traditional mature fine tailings (MFT) reclaim water through the monitoring of plant water uptake and whole plant fresh weight over the course of the experiment. It was found that there are no significant differences between the phytotoxicity observed in the MFT and AFD treatments and it was also found that spring runoff melt water from the AFD deposits is less phytotoxic than the original release water.
Two additional hydroponic studies using cattail and common reed were also conducted. The first examined the phytotoxic effects attributable solely to the naphthenic acids isolated from Shell’s Muskeg River Mine tailings, and the second evaluated the phytotoxic effects of amending mature fine tailings with gypsum. It was found that the gypsum amended tailings caused greater phytotoxicity in cattail and common reed than tailings without gypsum added. Furthermore, both species were tolerant to growing in nutrient media spiked with naphthenic acids (40 mg/L).
The phytotoxicity experiments conducted also demonstrated that common reed is consistently more tolerant to growing in water associated with oil sands tailings and is therefore the more appropriate choice for use in reclamation strategies involving wetland plants.
Mass spectrometry was used to determine the naphthenic acid molecular profiles for Shell oil sands tailings. Using low resolution mass spectrometry, no detectable features or changes to the composition of naphthenic acids attributable to Shell processing were found. High-resolution mass spectrometry provided insight into possible plant mediated changes and biodegradation of naphthenic acids. It appears as though, to some extent, cattail is able to dissipate naphthenic acids, which could explain the susceptibility of cattail to the phytotoxic effects of naphthenic acids. Further research is required to determine whether the changes observed in the naphthenic acid mixture are due to microbial degradation and/or a phytotoxic response of the plants studied.
|
108 |
Learning from the Past - Evaluating Forecasts for Canadian Oil Sands Production with Data / Utvärdering av historiska prognoser av oljesand i KanadaHehl, Friedrich January 2013 (has links)
Crude oil plays an important role for the global energy system. As there is ample evidence that conventional oil production will have peaked by 2020, unconventional oil has attained a stronger focus. In particular, oil derived from bitumen from Canadian oilsands has been proposed as a possible remedy to global oil depletion. This study aims to test the hypothesis that forecasts on the Canadian oil sands published between about 2000 and 2010 have been overestimating production significantly. A large compilation of oil sands projects, prognoses and production data has been established using openly available databases and reports. Conversion, standardization and analysis of the data was done using the statistical programming language R. The resulting programming code and databases have been compiled into a package available free and open-source online. The statistical analysis shows a significant bias of the prognoses towards an overestimation of oil sands production. The compilation shows that most authors tend to overestimate the rate of expansion of the industry. Therefore, any prognosis on the expansion of the industry should be examined thoroughly before use.
|
109 |
Identification of Oil Sands Naphthenic Acid Structures and Their Associated Toxicity to Pimephales promelas and Oryzias latipesBauer, Anthony E January 2013 (has links)
The oil sands, located in north-eastern Alberta, are one of the largest deposits of oil worldwide. Because the Alberta Environmental Protection and Enhancement Act prohibits the release of oil sands process-affected material into the environment, industry is storing vast quantities of tailings on mine lease sites. The oil sands industry is currently accumulating tailings waste at a rate of >105 m3/day, for which reclamation strategies are being investigated. Naphthenic acids (NAs) have been identified as the most toxic component of oil sands tailings as they are considered acutely toxic to a variety of biota, and are therefore a target contaminant for tailings pond reclamation strategies. Current literature based on Microtox® assays (marine bacteria Vibrio fischeri) suggests that lower molecular weight NAs are more toxic than higher molecular weight NAs. The following thesis involves the utilization of NA fractions and their relative toxicities to determine if NA toxicity is related to NA molecular weight.
A previous study generated an oil sands-derived naphthenic acid extract (NAE), which was fractionated by distillation at stepped temperatures, yielding five fractions with increasing median molecular weights (Daltons). In the present study, the same extract and five fractions were utilized. To expand on the earlier characterization which involved a low resolution electrospray ionization mass spectrometry (ESI-MS), the whole extract and five fractions were analysed using electrospray ionization high-resolution mass spectrometry (ESI-HRMS) and synchronous fluorescence spectroscopy (SFS). Mean molecular weights were generated for each fraction, and an increase in molecular weight with increasing fraction number was confirmed. Respective mean Daltons and relative proportions for each fraction are as follows: 237 and 11.9 % (fraction 1), 240 and 32.3% (fraction 2), 257 and 33.4% (fraction 3), 308 and 16.8% (fraction 4), and 355 and 5.6% (fraction 5). When chemical analyses of fractions were compared, it was determined that structures contributing to increased molecular weight included increased cyclic structures (up to 7-ring structures), aromaticity (mono- and diaromatics), nitrogen, sulfur, and oxygen heteroatoms, and dihydroxy/dicarboxy compounds. In addition, characterization data suggested the presence of NAs exhibiting estrogenic structures.
Following chemical characterization, NA fractions were subject to embryo/larval bioassays using two fish species: Oryzias latipes (Japanese medaka) and Pimephales promelas (fathead minnow). Endpoints evaluated were mortality, time to hatch, hatch length, and abnormalities. Results suggest that relative NA fraction toxicity is not related to molecular weight, as no trend relating mean Dalton weight to toxicity was observed for any endpoint in both species. Acute toxicity data indicated differences between fractions as high as 2-fold, although results were species-dependent. Fraction 1 displayed the lowest potency (highest LC50) for both Japanese medaka (0.291 mM) and fathead minnow (0.159 mM). Fractions 3 and 2 for Japanese medaka (0.149 and 0.157 mM, respectively), and fractions 5 and 2 for fathead minnow (0.061 and 0.080 mM, respectively) displayed the greatest potencies for mortality (lowest LC50). When fraction LC50s for Japanese medaka were compared to the whole NAE (0.143 mM), the mid molecular weight fractions (fractions 2 and 3) appeared most similar to the whole NA. . In terms of relative toxicity and proportion, constituents in the mid molecular range fractions (2 and 3) likely represent greater risk compared to other fractions, and further chemical and toxicological characterization of constituents within these fractions is warranted particularly for long-chained, monocarboxylic acids, with low aromaticity.
Japanese medaka and fathead minnow varied in their sensitivity and their relative response to different fractions. In general, fathead minnow were more sensitive than Japanese medaka based on lower estimates of LC50 and threshold (growth) values in addition to the presence of developmental abnormalities (predominately yolk sac edema) associated with a few of the fractions. Compared to differences in toxicity between fractions for a given species (>2-fold for fathead minnow), there was more variability between species for a given fraction (> 3-fold for fraction 5). Also, the relative toxicity of fractions as indicated in the present study is contrary to the results generated using Vibrio fischeri for the same fractions. Thus, there is a need for multi- endpoint and species toxicity evaluations to assess the efficacy of remediation and reclamation options for reducing toxicity of oil sands tailings.
|
110 |
Evaluation of metals release from oil sands coke : an ecotoxicological assessment of risk and hazard to aquatic invertebratesPUTTASWAMY, NAVEEN V 26 August 2011
The oil sands operations in northeast Alberta, Canada, employ unconventional processes to produce synthetic crude oil (SCO). Because the extracted bitumen, ¡®the form of oil in oil sands¡¯, is highly viscous, it requires thermal upgrading to produce SCO. Coking technology is used to convert heavy bitumen fractions to lighter volatile fractions. During this process, an enormous volume of solid coke is produced and the metal impurities (e.g. Al, Fe, Mn, Ni, Ti and V) present in bitumen fractions end-up in the coke particles. As coke demands significant space for storage, oil sands companies are exploring options for placing coke into reclamation landscapes for long term storage and recovery. However, coke holds appreciable amounts of potentially leachable metals that may impede the performance of reclamation landscapes. Although two previous coke leaching studies had showed that coke released metals into water at concentrations exceeding the Canadian guidelines for the protection of aquatic life, the ecotoxicological hazard and risk of these metals were not well characterized. Therefore, the overall goal of this research was to characterize the fate and toxicity of metals associated with coke.
In this research, the toxicity of coke leachates collected from oil sands field sites and those artificially generated in the laboratory were evaluated using a standard three-brood Ceriodaphnia dubia tests. Coke leachates (CLs) collected over a period of 20 months from two field lysimeters were found to be acutely toxic to C. dubia. Vanadium concentrations were significantly higher (p¡Ü0.05) than concentrations of all other metals in CLs from both lysimeters, and also in leachates from a laboratory batch renewal leaching study. Furthermore, toxic unit (TU) calculations suggested that Ni and V were likely the cause of CL toxicity, but this was not explicitly proven. Therefore, a chronic toxicity identification and evaluation (TIE) approach was adopted to identify and confirm the cause(s) of CL toxicity. Coke was subjected to a 15 day batch leaching process in the laboratory at pH 5.5 and 9.5 in order to characterize the effect of pH on metals release from coke, and to generate CLs for use in TIE tests. The 7-day LC50 estimates for C. dubia survival were 6.3% and 28.7% (v/v) for CLs generated at pH 5.5 and 9.5, respectively. The dissolved concentrations of Mn, Ni and Zn were high (p¡Ü0.05) in pH 5.5 CL, whereas Al, Mo and V were high (p¡Ü0.05) in pH 9.5 CL. Evidence gathered from a series of chronic TIE tests revealed that Ni and V were the cause of toxicity in pH 5.5 CL, whereas V was the primary cause of toxicity in pH 9.5 CL. Further, the influence of bicarbonate, chloride and sulfate ions on metals release, speciation and Ni and V toxicity was investigated. The type and amount of metals released from coke was significantly influenced by the ion type elevated in the leaching solution. Specifically, sulfate influenced mobilization of Ni, Fe, Mn and Zn from coke, whereas bicarbonate enhanced Al, Mo and V releases from coke. With respect to toxicity, increasing bicarbonate decreased the 7-day Ni2+ IC50 from 6.3 to 2.3 ¦Ìg Ni2+/L suggesting enhanced Ni toxicity at high pH or alkalinity. Conversely, sulfate showed a protective effect against V toxicity to C. dubia.
The research presented in this thesis suggests that coke will not be inert when stored in reclamation landscapes and that metals, particularly Ni and V, could reach ecotoxicologically relevant levels in surface waters or substrate porewaters, under favourable leaching conditions. Operationally, efforts should focus on remediation and monitoring of metals released from coke, particularly Ni and V, in impacted wetlands, especially before discharging water into natural wetlands and/or local streams and rivers.
|
Page generated in 0.1629 seconds