• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 170
  • 64
  • 27
  • 25
  • 13
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 373
  • 100
  • 99
  • 44
  • 39
  • 35
  • 32
  • 30
  • 27
  • 27
  • 25
  • 25
  • 24
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Energy-Efficient Scalable Serial-Parallel Multiplication Architecture for Elliptic Curve Cryptosystem

Su, Chuan-Shen 25 July 2012 (has links)
In asymmetric cryptosystems, an important advantage of Elliptic Curve Cryptosystem (ECC) is the shorter key lengths than other cryptosystems. It can provide a level of security when the bit length over than 160 bits. So it has become a popular public key cryptographic system in recent year. Multiplier needs to run many times in scalar multiplication and it plays an essential role in ECC. Since the registers in multiplier are shifted every iteration, it will consume a lot of power in the computing process. So in this thesis, we propose five methods to save multiplication¡¦s energy consumption based on a scalable serial-parallel algorithm[1]. The first method is to design a low-power shift-register by modifying shift-register B to reduce the frequency of registers shifted. The second method is to use a frequency divider circuit. It can make registers to access a value every two clock cycles by modifying RA units. The third method is to introduce the gated clock circuit, and the clock signal of register will be disabled if its value is the same. The fourth method is to skip redundant operations and it can decrease the number of clock cycles for completing a multiplication operation. The last method raises multiplier¡¦s throughput by modifying RA units. The former three methods focus on low-power design, and the latter two methods emphasize on improving performance. Reducing power consumption and improving performance will save multiplication¡¦s energy consumption. Finally, we propose a Half Cycles schedule to raise scalar multiplication¡¦s performance. It is based on Montgomery scalar multiplication algorithm with projective coordinate[22][26]. For the hardware implementation, TSMC 0.13um library is employed and all modules are organized in a hierarchy structure. The implementation results show that the proposed multipliers have less energy consumption than traditional multiplier. It can get 5% ~ 24% energy saving. For Montgomery scalar multiplication, it can also reduce 12% ~ 47% energy consumption and is suitable for portable electronic products because its low area complexity and low energy.
122

Entrainment and mixing properties of multiphase plumes: Experimental studies on turbulence and scalar structure of a bubble plume

Seol, Dong Guan 15 May 2009 (has links)
This dissertation presents a series of laboratory experiments to study flow and mixing properties of multiphase plumes. The particle image velocimetry (PIV) and laserinduced fluorescence (LIF) techniques are developed to measure two-dimensional velocity and concentration fields of multiphase plumes. The developed measurement techniques are applied to bubble plumes in different ambient conditions. The problems and errors in the two-phase PIV application to a bubble plume case are addressed through a comparative study between the optical separation method using fluorescent particles and a new phase separation method using vector postprocessing. The study shows that the new algorithm predicts well the instantaneous and time-averaged velocity profiles and has errors comparable to those for image masking techniques. The phase separation method developed in the previous section is applied to study the mean flow characteristics of a bubble plume in quiescent and unstratified condition. The entrainment coefficients representing the mixing properties of a bubble plume are calculated to lie between 0.08 near the plume source and 0.05 in the upper region, and to depend on the non-dimensional quantity us/(B/z)1/3, where us is the bubble slip velocity, B is the initial buoyancy flux, and z is the height from the diffuser. Further, the LIF technique is investigated to measure the scalar concentration field around a bubble plume in quiescent, unstratified condition. This new application to bubble plumes accounts for light scattering by bubbles using an attenuation coef- ficient that is proportional to the local void fraction. Measured scalar concentration fields show similar trend in concentration fluctuation to turbulent plume cases. Finally, the velocity and concentration field measurements using the developed two-phase PIV and LIF methods are applied for a bubble plume in a density-stratified ambient. The turbulent flow characteristics induced by a bubble plume in a stratified ambient water are studied. The plume fluctuation frequency is measured as about 0.1 Hz and compares well to plume wandering frequency measured in unstratified plume cases.
123

Scalar Mesons In Radiative Phi-meson Decays Into Neutral K-meson States

Sisman Korkmaz, Canan 01 September 2006 (has links) (PDF)
Radiative Decays of the phi-meson to the scalar mesons f0(980) and a0(980) are investigated within the framework of charged kaon loop model for both point-like scalar mesons and for scalar mesons with extended structure. Then, the radiative phi-meson decay into neutral K-meson is studied via a two step mechanism in which the scalar mesons couple the final state to the phi-meson through the charged kaon loop. The branching ratio of this decay is calculated and it is shown that this reaction will not provide a significant background to the measurements of phi-meson into neutral K-meson states decay for testing CP violation.
124

Scalar Multiplication On Elliptic Curves

Yayla, Oguz 01 August 2006 (has links) (PDF)
Elliptic curve cryptography has gained much popularity in the past decade and has been challenging the dominant RSA/DSA systems today. This is mainly due to elliptic curves offer cryptographic systems with higher speed, less memory and smaller key sizes than older ones. Among the various arithmetic operations required in implementing public key cryptographic algorithms based on elliptic curves, the elliptic curve scalar multiplication has probably received the maximum attention from the research community in the past a few years. Many methods for efficient and secure implementation of scalar multiplication have been proposed by many researchers. In this thesis, many scalar multiplication methods are studied in terms of their mathematical, computational and implementational points.
125

Lattice Boltzmann equation simulations of turbulence, mixing, and combustion

Yu, Huidan 12 April 2006 (has links)
We explore the capability of lattice Boltzmann equation (LBE) method for complex fluid flows involving turbulence, mixing, and reaction. In the first study, LBE schemes for binary scalar mixing and multi-component reacting flow with reactions are developed. Simulations of initially non-premixed mixtures yield scalar probability distribution functions that are in good agreement with numerical data obtained from Navier-Stokes (NS) equation based computation. One-dimensional chemically-reacting flow simulation of a premixed mixture yields a flame speed that is consistent with experimentally determined value. The second study involves direct numerical simulation (DNS) and large-eddy simulation (LES) of decaying homogenous isotropic turbulence (HIT) with and without frame rotation. Three categories of simulations are performed: (i) LBE-DNS in both inertial and rotating frames; (ii) LBE-LES in inertial frame; (iii) Comparison of the LBE-LES vs. NS-LES. The LBE-DNS results of the decay exponents for kinetic energy k and dissipation rate ε, and the low wave-number scaling of the energy spectrum agree well with established classical results. The LBE-DNS also captures rotating turbulence physics. The LBE-LES accurately captures low-wave number scaling, energy decay and large scale structures. The comparisons indicate that the LBE-LES simulations preserve flow structures somewhat more accurately than the NS-LES counterpart. In the third study, we numerically investigate the near-field mixing features in low aspect-ratio (AR) rectangular turbulent jets (RTJ) using the LBE method. We use D3Q19 multiple-relaxation-time (MRT) LBE incorporating a subgrid Smagorinsky model for LES. Simulations of four jets which characterized by AR, exit velocity, and Reynolds number are performed. The investigated near-field behaviors include: (1) Decay of mean streamwise velocity (MSV) and inverse MSV; (2) Spanwise and lateral profiles of MSV; (3) Half-velocity width development and MSV contours; and (4) Streamwise turbulence intensity distribution and spanwise profiles of streamwise turbulence intensity. The computations are compared against experimental data and the agreement is good. We capture both unique features of RTJ: the saddle-back spanwise profile of MSV and axis-switching of long axis from spanwise to lateral direction. Overall, this work serves to establish the feasibility of the LBE method as a viable tool for computing mixing, combustion, and turbulence.
126

Optimal designs for multivariate calibrations in multiresponse regression models

Guo, Jia-Ming 21 July 2008 (has links)
Consider a linear regression model with a two-dimensional control vector (x_1, x_2) and an m-dimensional response vector y = (y_1, . . . , y_m). The components of y are correlated with a known covariance matrix. Based on the assumed regression model, there are two problems of interest. The first one is to estimate unknown control vector x_c corresponding to an observed y, where xc will be estimated by the classical estimator. The second one is to obtain a suitable estimation of the control vector x_T corresponding to a given target T = (T_1, . . . , T_m) on the expected responses. Consideration in this work includes the deviation of the expected response E(y_i) from its corresponding target value T_i for each component and defines the optimal control vector x, say x_T , to be the one which minimizes the weighted sum of squares of standardized deviations within the range of x. The objective of this study is to find c-optimal designs for estimating x_c and x_T , which minimize the mean squared error of the estimator of xc and x_T respectively. The comparison of the difference between the optimal calibration design and the optimal design for estimating x_T is provided. The efficiencies of the optimal calibration design relative to the uniform design are also presented, and so are the efficiencies of the optimal design for given target vector relative to the uniform design.
127

Experimental study of passive scalar mixing in swirling jet flows

Örlü, Ramis January 2006 (has links)
<p>Despite its importance in various industrial applications there is still a lack of experimental studies on the dynamic and thermal field of swirling jets in the near-field region. The present study is an attempt to close this lack and provide new insights on the effect of rotation on the turbulent mixing of a <i>passive scalar</i>, on turbulence (joint) statistics as well as the turbulence structure.</p><p>Swirl is known to increase the spreading of free turbulent jets and hence to entrain more ambient fluid. Contrary to previous experiments, which leave traces of the swirl generating method especially in the near-field, the swirl was imparted by discharging a slightly heated air flow from an axially rotating and thermally insulated pipe (6 m long, diameter 60 mm). This gives well-defined axisymmetric streamwise and azimuthal velocity distributions as well as a well-defined temperature profile at the jet outlet. The experiments were performed at a <i>Reynolds</i> number of 24000 and a swirl number (ratio between the angular velocity of the pipe wall and the bulk velocity in the pipe) of 0.5.</p><p>By means of a specially designed combined X-wire and cold-wire probe it was possible to simultaneously acquire the instantaneous axial and azimuthal velocity components as well as the temperature and compensate the former against temperature variations. The comparison of the swirling and non-swirling cases clearly indicates a modification of the turbulence structure to that effect that the swirling jet spreads and mixes faster than its non-swirling counterpart. It is also shown that the streamwise velocity and temperature fluctuations are highly correlated and that the addition of swirl drastically increases the streamwise<i> passive scalar</i> flux in the near field.</p>
128

Passive scalar mixing in turbulent flow

Bos, Wouter 24 June 2005 (has links) (PDF)
Le mélange d'un scalaire passif par un écoulement turbulent est étudié. D'abord, la simulation numérique directe (DNS), la simulation des grandes échelles (LES) et des arguments dimensionnels sont employés pour étudier le spectre du flux de scalaire dans une turbulence isotrope avec un gradient moyen uniforme de scalaire. Une loi d'échelle est dérivée. Cette loi conduit à des pentes du spectre variant entre -5/3 et -7/3 en zone inertielle. De premiers résultats de LES plaident en faveur d'un comportement en K^-2. Ensuite, en utilisant une fermeture en deux points (EDQNM), nous montrons qu'aux nombres de Reynolds très élevés, le spectre de flux de scalaire dans la zone intertielle se comporte en K^-7/3. Ce résultat est en accord avec l'analyse dimensionnelle classique de Lumley (1967). Aux nombres de Reynolds correspondant aux expériences de laboratoire, la fermeture conduit à des spectres plus près de K^-2. Nous montrons ensuite que le comportement en K^-2 trouvé en LES est induit par le forçage à grande échelle. La fermeture est alors appliquée au cas des écoulements homogènes cisaillés et les spectres du flux de scalaire longitudinal et transverse sont étudiés. Le spectre du flux longitudinal est trouvé proportionnelle à K^-23/9. Ce résultat est en accord avec l'expérience mais est en désaccord avec l'analyse dimensionnelle classique. Finalement, nous montrons que le lien entre la dispersion de particules et le mélange d'un scalaire permet de formuler une fermeture en deux points et un temps qui ne nécessite l'introduction d'aucune constante dans le modèle.
129

Adaptive and convergent methods for large eddy simulation of turbulent combustion

Heye, Colin Russell 16 March 2015 (has links)
In the recent past, LES methodology has emerged as a viable tool for modeling turbulent combustion. LES computes the large scale mixing process accurately, thereby providing a better starting point for small-scale models that describe the combustion process. Significant effort has been made over past decades to improve accuracy and applicability of the LES approach to a wide range of flows, though the current conventions often lack consistency to the problems at hand. To this end, the two main objectives of this dissertation are to develop a dynamic transport equation-based combustion model for large- eddy simulation (LES) of turbulent spray combustion and to investigate grid- independent LES modeling for scalar mixing. Long-standing combustion modeling approaches have shown to be suc- cessful for a wide range of gas-phase flames, however, the assumptions required to derive these formulations are invalidated in the presence of liquid fuels and non-negligible evaporation rates. In the first part of this work, a novel ap- proach is developed to account for these evaporation effects and the resulting multi-regime combustion process. First, the mathematical formulation is de- rived and the numerical implementation in a low-Mach number computational solver is verified against one-dimensional and lab scale, both non-reacting and reacting spray-laden flows. In order to clarify the modeling requirements in LES for spray combustion applications, results from a suite of fully-resolved direct numerical simulations (DNS) of a spray laden planar jet flame are fil- tered at a range of length scales. LES results are then validated against two sets of experimental jet flames, one having a pilot and allowing for reduced chemistry modeling and the second requiring the use of detail chemistry with in situ tabulation to reduce the computational cost of the direct integration of a chemical mechanism. The conventional LES governing equations are derived from a low-pass filtering of the Navier-Stokes equations. In practice, the filter used to derive the LES governing equations is not formally defined and instead, it is assumed that the discretization of LES equations will implicitly act as a low-pass filter. The second part of this study investigates an alternative derivation of the LES governing equations that requires the formal definition of the filtering operator, known as explicitly filtered LES. It has been shown that decoupling the filter- ing operation from the underlying grid allows for the isolation of subfilter-scale modeling errors from numerical discretization errors. Specific to combustion modeling are the aggregate errors associated with modeling sub-filter distribu- tions of scalars that are transported by numerical impacted turbulent fields. Quantities of interest to commonly-used combustion models, including sub- filter scalar variance and filtered scalar dissipation rate, are investigated for both homogeneous and shear-driven turbulent mixing. / text
130

Quantitative measurements of ablation-products transport in supersonic turbulent flows using planar laser-induced fluorescence

Combs, Christopher Stanley 17 September 2015 (has links)
A recently-developed experimental technique based on the sublimation of naphthalene, which enables imaging of the dispersion of a passive scalar using planar laser-induced fluorescence (PLIF), is applied to a Mach 5 turbulent boundary layer and a NASA Orion capsule flowfield. To enable the quantification of naphthalene PLIF images, quantitative fluorescence and quenching measurements were made in a temperature- and pressure-regulated test cell. The test cell measurements were of the naphthalene fluorescence lifetime and integrated fluorescence signal over the temperature range of 100 K to 525 K and pressure range of 1 kPa to 40 kPa in air. These data enabled the calculation of naphthalene fluorescence yield and absorption cross section over the range of temperatures and pressures tested, which were then fit to simple functional forms for use in the calibration of the PLIF images. Quantitative naphthalene PLIF images in the Mach 5 boundary layer revealed large-scale naphthalene vapor structures that were regularly ejected out to wall distances of approximately y/δ = 0.6 for a field of view that spanned 3δ to 5δ downstream of the trailing edge of the naphthalene insert. The magnitude of the calculated naphthalene mole fraction in these structures at y/δ = 0.2 ranged from approximately 1-6% of the saturation mole fraction at the wind tunnel recovery temperature and static pressure. An uncertainty analysis showed that the uncertainty in the inferred naphthalene mole fraction measurements was ± 20%. Mean mole fraction profiles collected at different streamwise locations were normalized by the mole fraction measured at the wall and a characteristic height of the scalar boundary layer, causing the profiles to collapse into one “universal” mole fraction profile. Two-dimensional fields of naphthalene mole fraction were also obtained simultaneously with velocity by using particle image velocimetry (PIV) and PLIF. The images show large-scale naphthalene vapor structures that coincide with regions of relatively low streamwise velocity. The covariance of naphthalene mole fraction with velocity indicates that an ejection mechanism is transporting low-momentum, high-scalar-concentration fluid away from the wall, resulting in the protrusions of naphthalene vapor evident in the instantaneous PLIF images. Lastly, naphthalene PLIF was used to visualize the dispersion of gas-phase ablation products on a scaled Orion capsule model at four different angles of attack at Mach 5. High concentrations of scalar were imaged in the capsule recirculation region. Additionally, intermittent turbulent structures were visualized on the heat shield surface, particularly for the 12° and 52° AoA cases.

Page generated in 0.0286 seconds