• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 8
  • 8
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spatial Variation of Magnitude Scaling Factors During the 2010 Darfield and 2011 Christchurch, New Zealand, Earthquakes

Carter, William Lake 18 May 2016 (has links)
Magnitude Scaling Factors (MSF) account for the durational effects of strong ground shaking on the inducement of liquefaction within the simplified liquefaction evaluation procedure which is the most commonly used approach for assessing liquefaction potential worldwide. Within the context of the simplified procedure, the spatial variation in the seismic demand imposed on the soil traditionally has been assumed to be solely a function of the spatial variation of the peak amplitude of the ground motions and the characteristics of the soil profile. Conversely, MSF have been solely correlated to earthquake magnitude. This assumption fails to appreciate the inverse correlation between the peak amplitude of ground motions and strong ground motion duration, and thus MSF would seemingly vary spatially. The combination of well-documented liquefaction response during the Darfield and Christchurch, New Zealand, earthquakes, densely-recorded ground motions for the events, and detailed subsurface characterization provides an unprecedented opportunity to investigate the significance of the spatial variation of MSF on the inducement of liquefaction. Towards this end, MSF were computed at 15 strong motion recording station sites across Christchurch and its surroundings using two established approaches. Trends in the site and spatial variation of the MSF computed for both the Darfield and Christchurch earthquakes are scrutinized and their implications on liquefaction evaluations are discussed. / Master of Science
2

Mechanistic prediction of intestinal first-pass metabolism using in vitro data in preclinical species and in man

Hatley, Oliver James Dimitriu January 2014 (has links)
The impact of the intestine in determining the oral bioavailability of drugs has been extensively studied. Its large surface area, metabolic content and positioning at the first site of exposure for orally ingested xenobiotics means its contribution can be significant for certain drugs. However, prediction of the exact metabolic component of the intestine is limited, in part due to limitations in validation of in vitro tools as well as in vitro-in vivo extrapolation scaling factors. Microsomes are a well established in vitro tool for extrapolating hepatic metabolism, however standardised methodologies for preparation in the intestine are limited, in light of complexities in preparation (e.g. presence of multiple non-metabolic cells, proteases and mucus). Therefore, the aims of this study were to establish an optimised method of intestinal microsome preparation via elution in the proximal rat intestine, and to determine microsomal scaling factors by correcting for protein losses during preparation. In addition, to assess species in another preclinical species (dog) and human as well as assessing and regional differences in scaling factors and metabolism. Following optimisation of a reproducible intestinal microsome preparation method in the rat, the importance of heparin in limiting mucosal contamination was established. These microsomes were characterised for total cytochrome P450 (CYP) content, and CYP and uridine 5′-diphosphate glucuronosyltransferase (UGT) activities using maker probes of testosterone and 4-nitrophenol. Loss corrected microsomal scaling factors between two pools of n=9 rats was 9.6±3.5 (recovery 33%). A broad range of compounds (n=25) in terms of metabolic activity and physicochemical properties were screened in rat intestinal microsomes. The prediction accuracy relative to in house generated or literature in vivo estimates of the fraction escaping intestinal metabolism (FG) through in vitro-in vivo extrapolation of observed metabolism and the derived scaling factors and either Caco-2 permeability of physicochemical permeability estimates utilising the Qgut model. In the dog, regional differences in intestinal scaling factors and metabolic activities were explored, as well as relationships between the proximal intestine and liver in matched donors. Positive correlations in both hepatic activity and microsomal scalars were observed. Robust scaling factors were established using the 3 microsomal markers. A total of 24 compounds were screened for hepatic and intestinal metabolism in order to make in vivo estimates of FG, the fraction escaping hepatic metabolism (FH) and oral bioavailability (F). Estimates based on Caco-2 and physicochemical based scaling, as well as utilising a commercial PBPK software platform (ADAM model, Simcyp® v12) were broadly similar with generally reduced prediction accuracy in proximal physicochemical based Qgut scaling, and improved predictions using Caco-2 Qgut or PBPK approaches. Worse predictions were observed for compounds with high protein binding, transporter substrates and/or CYP3A inhibitors. Regional metabolism demonstrated peak metabolism in the proximal intestine, before declining distally. Human intestinal microsomes were prepared for jejunum and ileum tissue. Although samples were limited, regional differences in metabolic activities and scaling factors were also assessed, using correction markers and activity in 23 compounds. In all, 20 compounds overlapped between all three species. Comparison in Fa.FG between rat and human CYP3A substrates showed a modest relationship, however relationships between species and human were generally poor given the observed differing metabolic contributions of testosterone and 4-NP metabolite formation between species limited the observed relationships between species. However, within species, good estimates of oral bioavailability were observed. This is the largest know interspecies comparison of intestinal metabolism and scaling factors with microsomes prepared within the same lab.
3

Design of a small-scale wave energy converter

Farjana, Sumaya January 2022 (has links)
In this study, a small-scale point absorber wave energy converter has been designed contemplating a full-scaled point absorber in the Mediterranean Sea state. The scaling factor for the small-scaled version has been determined by the damping coefficient calculation of the power take-off in 1:10, 1:15, and 1:20 scaling factors. Here a rotational power take-off has been designed instead of the linear one. The rotational power take-off will follow a similar principle as the Eddy current brake. The effect of change in the radius of the translator and magnetic flux in the damping coefficient had been calculated as well. The calculation for the damping coefficient has been conducted in COMSOL Multiphysics. The design for the point absorber was assembled in SolidWorks. In this article, specific attention is given to a variety of aspects affecting the damping coefficient and the way it can aid to determining the scaling factor parameters for a small-scale wave energy converter.
4

Adaptive Rollover Control Algorithm Based on an Off-Road Tire Model

Hopkins, Brad Michael 06 January 2010 (has links)
Due to a recent number of undesired rollovers in the field for the studied vehicle, rollover mitigation strategies have been investigated and developed. This research begins with the study of the tire, as it is the single component on the vehicle responsible for generating all of the non-inertial forces to direct the motion of the vehicle. Tire force and moment behavior has been researched extensively and several accurate tire models exist. However, not much research has been performed on off-road tire models. This research develops an off-road tire model for the studied vehicle by first using data from rolling road testing to develop a Pacejka Magic Formula tire model and then extending it to off-road surfaces through the use of scaling factors. The scaling factors are multipliers in the Magic Formula that describe how different aspects of the force and moment curves scale when the tire is driven on different surfaces. Scaling factors for dirt and gravel driving surfaces were obtained by using an existing portable tire test rig to perform force and moment tests on a passenger tire driven on these surfaces. The off-road tire model was then used as a basis for developing control algorithms to prevent vehicle rollover on off-road terrain. Specifically, a direct yaw control (DYC) algorithm based on Lyapunov direct method and an emergency roll control (ERC) algorithm based on a rollover coefficient were developed. Emergency evasive maneuvers were performed in a simulation environment on the studied vehicle driven on dry asphalt, dirt, and gravel for the controlled and uncontrolled cases. Results show that the proposed control algorithms significantly improve vehicle stability and prevent rollover on a variety of driving surfaces. / Master of Science
5

Identifying Operating Conditions of Tires During Highway Driving Maneuvers

Attravanam, Siddarth Kashyap January 2018 (has links)
No description available.
6

Prochaine generation paneuropéennes équations de prédiction de mouvements de terrains pour les paramêtres de ingénierie / Next generation pan-european ground-motion prediction equations for engineering parameters

Sandikkaya, Mustafa Abdullah 11 April 2014 (has links)
Cette étude présente tout d'abord la récente banque de données fort mouvement pan-européen qui est mis à jour et la version étendue de bases de données paneuropéennes précédentes. Les métadonnées relatives est soigneusement compilé et réévalué. La base de données est conforme aux normes élevées pour être des ressources de la communauté paneuropéenne de génie parasismique. Ensuite, une étude empirique non linéaire place amplification modèle, fonction de la moyenne en fonction du temps de la plus haute 30m profil de vitesse des ondes de cisaillement et l'accélération maximale du sol sur le roc, est développé. L'objectif principal de tirer un tel modèle est de l'utiliser dans les équations de prédiction des mouvements du sol (GMPEs). Par ailleurs, l'évaluation des facteurs de site dans les codes de conception parasismique montre qu'il est également applicable dans les facteurs de sites informatiques. À cette fin, une autre méthodologie qui prend en compte les résultats de l'analyse de l'aléa sismique probabiliste et déterministe modèles de site est proposé. Cette étude génère GMPEs de réponse élastique ordonnées spectrales horizontale et verticale d'amortissement de 5%. Plutôt que d'équations directs pour le mouvement vertical, afin d'obtenir spectre du danger horizontale et verticale cohérente, compatible GMPE de rapport vertical à horizontal est préférable. Modèles de mise à l'échelle d'amortissement supplémentaires pour modifier les spectres horizontaux et verticaux d'autres ratios d'amortissement sont proposées. / This study firstly presents the recent pan-European strong-motion databank that is updated and extended version of previous pan-European databases. The pertaining metadata is carefully compiled and reappraised. The database meets high standards for being resource of pan-European earthquake engineering community. Then, an empirical nonlinear site amplification model, function of time-based average of uppermost 30m shear wave velocity profile and peak ground acceleration on rock, is developed. The primary aim of deriving such a model is to use it in ground motion prediction equations (GMPEs). Besides, the evaluation of site factors in the seismic design codes shows that it is also applicable in computing site factors. To this end, an alternative methodology that considers the results of probabilistic seismic hazard analysis and deterministic site models is proposed. Finally, this study generates GMPEs for horizontal and vertical elastic response spectral ordinates for different damping values between 1% to 50%. Rather than direct equations for vertical motion, to obtain consistent horizontal and vertical hazard spectrum, compatible vertical-to-horizontal ratio GMPE is preferred. Additional damping scaling models to modify horizontal and vertical spectra at other damping ratios are proposed
7

Practical investigation of mixing phenomena by physical modelling : Scaling criteria applied for bottom gas-stirred water modelling of metallurgical vessels

Garpenquist, Simon, Lindfors, Carl Erik Sebastian January 2021 (has links)
Gas stirring is currently the most commonly used method of homogenizing liquid steel in commercial processes. However, due to the harsh environment during the process, physical models built out of e.g. plexiglass have been used to easier understand the complex phenomenon occurring in the process. The models are also used to optimize stirring conditions and estimate mixing times. Instead of liquid steel, water has been used for modelling, to increase safety and reduce costs. The water models are usually scaled down to sizes that are easier to handle. Scaling correctly requires fulfilling commonly used criteria and dimensionless numbers. This report investigated the accuracy of these dimensionless numbers and the relations commonly used for scaling. Existing studies and relations were evaluated, and the theoretically best suitable scaling equations were tested. Three bottom blown vessels were built, in order to test the existing relations. By applying scaling criteria and calculating gas flow rates accordingly, the correlation between theoretical mixing time and measured mixing time could be investigated. This thesis concluded that the correlation between the measured mixing times was not significant, however, by implementing the scale factor λ1/2 a better approximation seems to be given. / Gasomrörning är för tillfället den vanligaste metoden som används för att homogenisera flytande stål i kommersiella processer. På grund av de svåra förhållandena under processen har fysiska modeller, byggda av exempelvis plexiglas, använts. Detta för att enklare förstå de komplexa fenomen som uppstår under processen. Modellerna används också för att optimera omrörningsförhållandena och för att uppskatta blandningstider. Istället för flytande stål har vatten använts vid modellering för att öka säkerheten och minska kostnaderna. Vattenmodellerna är vanligtvis nedskalade till storlekar som är lättare att hantera. En korrekt skalning kräver att vanliga kriterier och dimensionslösa tal uppfylls. Denna rapport undersökte noggrannheten för dessa dimensionslösa tal samt relationer som vanligtvis används vid skalning. Befintliga studier och relationer utvärderades och de teoretiskt mest lämpliga skalningsekvationerna testades. Tre stycken kärl med bottenblåsning byggdes för att testa dessa relationer. Genom att tillämpa skalningskriterier och beräkna gasflödeshastigheterna, kunde korrelationen mellan de teoretiska och uppmätta blandningstiderna undersökas. Denna avhandling drog slutsatsen att korrelationen mellan de uppmätta blandningstiderna inte var signifikant. Dock verkade en bättre approximation fås när skalfaktorn λ1/2 implementerades.
8

Scaling methods of leakage correction in GRACE mass change estimates revisited for the complex hydro-climatic setting of the Indus Basin

Tripathi, Vasaw, Groh, Andreas, Horwath, Martin, Ramsankaran, Raaj 18 April 2024 (has links)
Total water storage change (TWSC) reflects the balance of all water fluxes in a hydrological system. The Gravity Recovery and Climate Experiment/Follow-On (GRACE/GRACE-FO) monthly gravity field models, distributed as spherical harmonic (SH) coefficients, are the only means of observing this state variable. The well-known correlated noise in these observations requires filtering, which scatters the actual mass changes from their true locations. This effect is known as leakage. This study explores the traditional basin and grid scaling approaches, and develops a novel frequency-dependent scaling for leakage correction of GRACE TWSC in a unique, basin-specific assessment for the Indus Basin. We harness the characteristics of significant heterogeneity in the Indus Basin due to climate and human-induced changes to study the physical nature of these scaling schemes. The most recent WaterGAP (Water Global Assessment and Prognosis) hydrology model (WGHM v2.2d) with its two variants, standard (without glacier mass changes) and Integrated (with glacier mass changes), is used to derive scaling factors. For the first time, we explicitly show the effect of inclusion or exclusion of glacier mass changes in the model on the gridded scaling factors. The inferences were validated in a detailed simulation environment designed using WGHM fields corrupted with GRACE-like errors using full monthly error covariance matrices. We find that frequency-dependent scaling outperforms both basin and grid scaling for the Indus Basin, where mass changes of different frequencies are localized. Grid scaling can resolve trends from glacier mass loss and groundwater loss but fails to recover the small seasonal signals in trunk Indus. Frequency-dependent scaling can provide a robust estimate of the seasonal cycle of TWSC for practical applications such as regional-scale water availability assessments. Apart from these novel developments and insights into the traditional scaling approach, our study encourages the regional scale users to conduct specific assessments for their basin of interest.

Page generated in 0.0653 seconds