Spelling suggestions: "subject:"olejka""
1 |
Matematické modely pneumatik / Mathematical models of tiresStraka, Tomáš January 2021 (has links)
This master‘s thesis describes problematics of mathematical models of tires for computer simulations. The goal of this thesis is to depict currently used models of tires and to compare them. Thesis describes brush type models, Fiala, Magic Formula (Pacejka), FTire, UA-Gim, 521 and DELFT. Those models are compared to each other by simulations carried out in software MSC ADAMS Car. The results are shown in figures with commentary and evaluation. This thesis serves as introduction to problematics of currently used mathematical models of tire in computer simulations.
|
2 |
Adaptive Rollover Control Algorithm Based on an Off-Road Tire ModelHopkins, Brad Michael 06 January 2010 (has links)
Due to a recent number of undesired rollovers in the field for the studied vehicle, rollover mitigation strategies have been investigated and developed. This research begins with the study of the tire, as it is the single component on the vehicle responsible for generating all of the non-inertial forces to direct the motion of the vehicle. Tire force and moment behavior has been researched extensively and several accurate tire models exist. However, not much research has been performed on off-road tire models. This research develops an off-road tire model for the studied vehicle by first using data from rolling road testing to develop a Pacejka Magic Formula tire model and then extending it to off-road surfaces through the use of scaling factors. The scaling factors are multipliers in the Magic Formula that describe how different aspects of the force and moment curves scale when the tire is driven on different surfaces. Scaling factors for dirt and gravel driving surfaces were obtained by using an existing portable tire test rig to perform force and moment tests on a passenger tire driven on these surfaces. The off-road tire model was then used as a basis for developing control algorithms to prevent vehicle rollover on off-road terrain. Specifically, a direct yaw control (DYC) algorithm based on Lyapunov direct method and an emergency roll control (ERC) algorithm based on a rollover coefficient were developed. Emergency evasive maneuvers were performed in a simulation environment on the studied vehicle driven on dry asphalt, dirt, and gravel for the controlled and uncontrolled cases. Results show that the proposed control algorithms significantly improve vehicle stability and prevent rollover on a variety of driving surfaces. / Master of Science
|
3 |
Identifikace parametrů matematického modelu pneumatik / Identification of tire model parametersOlišar, Petr January 2020 (has links)
The main goal of this thesis is to obtain lateral parameters of the Magic Formula tire model of a tire commonly used in Formula Student competition. Both the author and the supervisor of the thesis know the tire name and its specification, but the research company that did the tire testing and provided me with the date prohibits sharing this of data publicly, so the tire designation is not mentioned in this thesis. The first chapter covers main theoretical facts related to a tire, briefly describes some of the tire models and shows possibilities how to determine tire characteristics that are used in a tire model. The thesis describes how to process raw tire data measured during a laboratory experiment using scripts created in Matlab software. The inputs variables are slip angle, lateral force, normal force and inclination angle. Raw data are splitted into parts, main coefficients of the Magic formula model (B, C, D, E, Sh, Sv) are calculated and subsequently the lateral parameters are obtained using least square method to fit parameters into the measured data. The works gives two main outcomes. The first output is a set of Matlab scripts that can be used to determine lateral parameters of any tire that has the same input data format as presented. A TIR file of the Formula Student tire in case of lateral slip is the second result of the work. This can be used for vehicle dynamics simulation of Formula Student racing car. The thesis also offers a comparison between parameters, which I calculated, and those gained thanks to Optimum Tire software by Calspan research company. Additionally the work shows the effect of load and inclination angle on lateral force.
|
4 |
Caractérisation du comportement non linéaire en dynamique du véhiculeBadji, Boualem 15 December 2009 (has links) (PDF)
En industrie automobile la créativité et l'innovation technologique sont les principaux atouts de développement et croissance économique. Le potentiel des constructeurs à innover et à rester compétitive font que la concurrence soit intense et durable. Ces évolutions technologiques des moyens de conception ont permit l'émergence de solutions orientées vers un perfectionnement continu du confort et de la sécurité active. Concevoir de tels systèmes requière une bonne connaissance du comportement du véhicule. Ceci peut être fait par une modélisation rigoureuse des différents organes afin de constituer un modèle dont la représentativité soit la plus proche possible du véhicule réel. A ce jour, il existe une multitude de modèles analytiques généralement issus d'une linéarisation individuelle du comportement de chaque composante du véhicule (surtout au niveau le comportement du pneumatique) autour d'une gamme d'excitation définie, comme le modèle bicyclette linéaire ou le modèle linéaire 4 roues. La maniabilité et la simplicité des méthodes d'analyses linéaires font que ces modèles soient largement utilisés dans l'industrie automobile pour l'analyse des réponses du véhicule. Cependant, ces modèles linéarisés sont très limités en termes de domaine de validité. En effet, pour les grandes sollicitations, le véhicule est généralement soumis à de fortes accélérations latérales (supérieurs à ) qui provoquent un fonctionnement non linéaire saturé des pneumatiques. Dans ce cas les modèles non linéaires deviennent obsolètes et ne permettent pas de prédire correctement les réponses d'un véhicule. Afin d'obtenir des modèles représentative dans le domaine non linéaire, l'approche principale est de considérer la totalité du modèle de pneumatique dans le modèle du véhicule à savoir la formule de Pacejka. De cette procédure résulte un modèle non linéaire complexe dont la résolution analytique pour extraire les caractéristiques des réponses est quasi-impossible. Dans ce cas la résolution numérique reste préférable. Afin d'éviter l'utilisation de la formule de Pacejka nous proposons d'utiliser un modèle bicyclette non linéaire basé sur une approximation polynomiale. L'idée principale est l'utilisation de méthodes non linéaires avancées dans le but d'obtenir les caractéristiques statiques et dynamiques des réponses du véhicule. Notre travail est orienté principalement dans l'analyse des non linéarités causées par de forts glissements latéraux des pneumatiques. Trois méthodes ont été retenues : La première est la méthode des séries des séries de Volterra et qui permet d'étudier l'impact des non linéarités sur les réponses d'un système dans le domaine temporel et fréquentiel. La deuxième méthode est l'équilibrage harmonique qui permet de déterminer analytiquement les fonctions réponses fréquentielles et des paramètres modaux non linéaires et leurs dépendances à l'amplitude d'excitation. La dernière technique est la méthode de Krylov-Bogoliubov qui permet l'analyse des réponses transitoire harmonique du véhicule pour excitations sinusoïdales. A l'issu de notre travail de recherche, nous avons réussi à répondre aux besoins de la problématique et nous avons abouti à des résultats innovants et très concluants concernant la dynamique non linéaire du véhicule. Ces résultats n'ont jamais été obtenus auparavant et ont donné lieu à deux publications internationales. Une première publication dans le journal de la dynamique de véhicule et une deuxième publication au congrès international de la dynamique de véhicule de la SIA (Société des Ingénieurs de l'Automobiles) à Lyon.
|
5 |
Identifying Operating Conditions of Tires During Highway Driving ManeuversAttravanam, Siddarth Kashyap January 2018 (has links)
No description available.
|
6 |
Analysis of Torque Vectoring Systems through Tire and Vehicle Model SimulationChatfield, Christopher 08 August 2023 (has links)
No description available.
|
Page generated in 0.0217 seconds