• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of electron-atom/molecule scattering resonances using complex multiconfigurational self-consistent field method

Samanta, Kousik 2009 May 1900 (has links)
We present a complex multicon figurational self-consistent field (CMCSCF)- based approach to investigate electron{atom/molecule scattering resonances. A modifi ed second quantization algebra adapted for biorthogonal spin orbitals has been applied to develop a quadratically convergent CMCSCF scheme. A new step-length control algorithm has been introduced in order to control the walk on the complex energy hypersurface and converge to correct CMCSCF stationary point. We have also developed a method (M1 method) based on the multiconfigurational spin tensor electron propagator (MCSTEP) to calculate resonance energies directly. These methods have been applied to investigate atomic and molecular scattering resonances. The test cases for our application were 2^P Be- and 2II_g N-_2 shape resonances. The position and the width of these resonances have been calculated for different complete active space choices. Convergence for CMCSCF calculations to a tolerance of 1:0 x 10^-10 a.u. for the energy gradient is achieved typically within ten iterations or less. The wide distribution of the values for the position and the width of the resonance reported in the literature has been explained by showing that there actually exists two distinct resonances which are close in energy. The resonance positions and widths from our calculation for the 2^IIg N-_2 shape resonance have been found to be very close to the experimental results. In another study, the effect of the orbitals with higher angular momentum has been investigated.
2

Dynamique de collisions moléculaires à très basse énergie : mise en évidence expérimentale de résonances quantiques / Molecular collision dynamics at very low energy

Chefdeville, Simon 12 December 2014 (has links)
Les calculs théoriques prévoient que la dynamique d’excitation rotationnelle desmolécules CO et O2, induite par collision avec H2, est dominée par des résonancesquantiques aux très basses énergies. Leur mise en évidence expérimentale estrendue difficile par la nécessité d’obtenir des énergies de collision très faibles et unegrande résolution en énergie. Les expériences menées grâce à un montage defaisceaux moléculaires croisés à angle d’intersection variable, nous permettent ainsid’observer le seuil des transitions j = 0  1 de CO à 3,85 cm-1 et Nj = 10  11 de O2à 3,96 cm-1. Ces énergies correspondent à l’énergie cinétique moyenne d’un gaz àune température inférieure à 4 K. Les pics dans le tracé des sections efficacesintégrales en fonction de l’énergie de collision, constituent la première observationexpérimentale de résonances pour des processus inélastiques. Le bon accord avecles calculs théoriques permet de valider les potentiels d’interaction et ainsi dedéduire les constantes de vitesse pour la modélisation du milieu interstellaire. Nosrésultats expérimentaux mettent en relief la nature quantique des interactionsmoléculaires aux très basses énergies. / Theoretical calculations predict that the dynamics of rotational excitation of CO or O2molecules, induced by collisions with H2, are dominated by quantum scatteringresonances at very low energies. However, experimental observation of these effectsis challenging: very low collision energies and high energy resolution are bothrequired. Experiments performed with a crossed molecular beam apparatus withvariable intersection angle allow us to observe the thresholds of the CO (j = 0  1)transition at 3.85 cm-1 and the O2 (Nj = 10  11) transition at 3.96 cm-1, whichcorrespond to the average kinetic energy of a gas below 4 K. The peaks in theintegral cross section’s collision energy dependence constitute the first experimentalobservation of resonances in an inelastic process. The good agreement betweentheory and experiment reinforces the confidence in the interaction potentials used todeduce rate coefficients for modeling the interstellar medium in the 1-20 K range. Ourexperimental results highlight the quantum nature of molecular interactions at verylow energies.
3

Composite Nanostructures as Effective Catalysts for Visible-Light-Driven Chemical Transformations

Rasamani, Kowsalya Devi, 0000-0002-1717-1426 January 2020 (has links)
The development of nanoscale heterostructure photocatalysts for the effective, direct utilization of visible light (400-750 nm, ~44% of solar spectrum) to drive important chemical conversions is a prime research area in the field of photocatalysis. Particles at nanoscale dimensions have a large surface area-to-volume ratio, expose a high number of active surface sites, and exhibit unique electronic properties (different from bulk) that are beneficial for improving the overall catalytic activity. However, the advantages of size reduction are often overshadowed by the low optical absorption (as absorption power  size3) and colloidal instability (extensive aggregation) of particles at the nanoscale. In this dissertation, we demonstrate a strategy to improve the colloidal stability and enhance the optical absorption of nano-sized semiconductor and metal nanoparticles (NPs) that exhibit weak visible light absorption. The colloidal, free-standing NPs are placed on transparent, dielectric silica nanospheres (SiOx NSs) that act as optical antenna supports, forming SiOx/NP composite nanostructures. The spherical morphology of SiOx enables scattering resonances (Fabry Perot or Whispering Gallery Modes) which enhances the local electric field on or near the surface of the NS. The NPs placed on the surface of SiOx NS interact with the locally enhanced electric field and exhibit improved optical absorption. By varying the size of the SiOx NS, the resonance wavelengths and the intensity of the local electric field enhancement can be tuned, offering the ability of such structures to effectively utilize a wide range of energies in the visible region. Composite nanostructures comprised of various classes of nanomaterials such as metal-doped semiconductor, plasmonic, and non-plasmonic metal NPs were investigated to perform the desirable solar-to-chemical transformations. First, we employed SiOx-loaded silver-doped silver chloride (SiOx/AgCl(Ag)) photocatalyst to investigate the role of metal-induced gap states in AgCl, a wide bandgap semiconductor. SiOx/AgCl(Ag) exhibit high catalytic performance and photostability after 10 cycles of the probe reaction, methylene blue (MB) degradation under visible light irradiation. The results indicate that the visible light absorption due to metal-induced gap states can be further improved by employing the SiOx NSs as supports that act as optical nanoantenna. We then studied the influence of NP size on the catalytic activity to understand the effect of size in promoting the generation and transfer of hot electrons to surface adsorbates. Our findings indicate that upon employing Ag NPs of different particle size (<10 nm and >10 nm) and normalizing for the optical absorption and moles of surface Ag atoms, the efficient generation and transfer of photoexcited hot electrons is favored in the small-sized Ag NPs (size <10 nm) than bigger Ag NPs. Next, we investigated the selective partial hydrogenation of nitroarene to N-aryl hydroxylamine using SiOx-loaded platinum (SiOx/Pt) photocatalysts. We found that change in the surface electronic structure of the small Pt NPs (size <5 nm) due to light illumination and surface modification (by adding suitable organic ligands), minimize the adsorption of the electron-rich hydroxylamine molecules and minimize their complete conversion to aniline, resulting in high N-hydroxylamine selectivity. Overall, our work shows that well-controlled composite nanostructures comprising of active catalyst loaded on dielectric SiOx NS supports that act as optical nanoantenna are a promising class of photocatalysts for driving photon-to-chemical transformations with high activity and product selectivity. / Chemistry
4

Étude mathématique et numérique des résonances dans une micro-cavité optique / Mathematical and numerical study of resonances in optical micro-cavities

Moitier, Zoïs 03 October 2019 (has links)
Cette thèse est consacrée à l'étude des fréquences de résonance de cavités optiques bidimensionnelles. Plus particulièrement, on s'intéresse aux résonances à modes de galerie (modes localisés au bord de la cavité avec un grand nombre d'oscillations). La première partie traite du calcul numérique des résonances par la méthode des éléments finis à l'aide de couches parfaitement adaptées, et d'une analyse de sensibilité des paramètres de celles-ci dans les trois situations suivantes : un problème unidimensionnel, une réduction du cas bidimensionnel invariant par rotation et le cas général. La deuxième partie porte sur la construction de développements asymptotiques des résonances à modes de galerie quand le nombre d'oscillations le long du bord tend vers l'infini. On considère d'abord le cas d'un problème invariant par rotation pour lequel le nombre d'oscillations s'interprète comme un paramètre semiclassique grâce à la transformée de Fourier angulaire. Ensuite, pour le cas général, la construction utilise un ansatz phase-amplitude de type BKW qui permet de se ramener à un opérateur de Schrödinger généralisé. Enfin, les résonances calculées numériquement dans la première partie sont comparées aux développements asymptotiques explicités par calcul formel. / This thesis is devoted to the study of resonance frequencies of bidimensional optical cavities. More specifically, we are interested in whispering-gallery modes (modes localized along the cavity boundary with a large number of oscillations). The first part deals with the numerical computation of resonances by the finite element method using perfectly matched layers, and with a sensibility analysis in the three following situations: an unidimensional problem, a reduction of the rotationally invariant bidimensional case, and the general case. The second part focuses on the construction of asymptotic expansions of whispering-gallery modes as the number of oscillations along of boundary goes to infinity. We start by considering the case of a rotationally invariant problem for which the number of oscillations can be interpreted as a semiclassical parameter by means of an angular Fourier transform. Next, for the general case, the construction uses a phase-amplitude ansatz of WKB type which leads to a generalized Schrödinger operator. Finally, the numerically computed resonances obtained in the first part are compared to the asymptotic expansions made explicit by the use of a computer algebra software.

Page generated in 0.1295 seconds