Spelling suggestions: "subject:"3analyse semiclassical"" "subject:"3analyse classique""
1 |
Quelques aspects de Chaos QuantiqueNonnenmacher, Stéphane 05 June 2009 (has links) (PDF)
Ce mémoire résume mes travaux dans 3 domaines reliés au "chaos quantique". J'y aborde tout d'abord les questions de répartition spatiale des fonctions propres de systèmes quantiques classiquement chaotiques. Dans une seconde partie, je résume mes travaux sur la distribution des résonances pour les systèmes de diffusion dont l'ensemble des trajectoires captées est fractal, et supporte une dynamique chaotique. Enfin, je mentionne des résultats obtenus sur les transformations chaotiques bruitées: l'étude du spectre, et de la relaxation vers l'équilibre de tels systèmes.
|
2 |
Résonances de Ruelle à la limite semiclassiqueArnoldi, Jean-françois 18 October 2012 (has links) (PDF)
Depuis Ruelle, puis Rugh, Baladi, Tsujii, Liverani et d'autres, on sait que la fuite vers l'équilibre statistique dans de nombreux systèmes dynamiques chaotiques est gouvernée par le spectre de résonances de Ruelle de l'opérateur de transfert. A la suite de récents travaux de Faure, Sjöstrand et Roy, cette thèse propose une approche semiclassique de systèmes dynamiques chaotiques de type partiellement expansifs. Une partie du mémoire est consacrée aux extensions d'applications expansives vers des groupes de Lie compacts, en se reistreignant essentiellement aux extensions vers le groupe spécial unitaire SU(2). On se sert de la théorie des états cohérents pour les groupes de Lie, développée dans les années 70 par Perelomov et Gilmore, pour mettre en oeuvre les outils semiclassiques et la théorie des résonances de Helfer et Sjöstrand. On en déduira une estimation de Weyl et un gap spectral pour les résonances de Ruelle prouvant que la fuite vers l'équilibre statistique dans ces modèles est gouvernée par un opérateur de rang fini (en accord avec les résultats obtenus par Tsujii pour les semi-flots partiellement expansifs). On étend ensuite cette approche aux modèles "ouverts" pour lesquels la dynamique présente un ensemble captif de Cantor. On montrera l'existence d'un spectre discret de résonances de Ruelle et on prouve une loi de Weyl fractale, analogue classique du théorème de Lin-Guillopé-Zworski pour les résonances du laplacien hyperbolique sur les surfaces à courbure négative constante. On montre aussi un gap spectral asymptotique. On expliquera pourquoi ces modèles semblent être des objets d'étude adaptés pour approcher des questions importantes et difficiles du chaos classique ou quantique. On pense en particulier au problème de la minoration du nombre de résonances, étudié dans le contexte des applications quantiques par Nonnenmacher et Zworski.
|
3 |
Classical and semi-classical analysis of magnetic fields in two dimensions / Analyse classique et semi-classique des champs magnétiques en deux dimensionsNguyen, Duc Tho 12 December 2019 (has links)
Ce manuscrit est consacré à l'étude de la mécanique classique et la mécanique quantique en présence d'un champ magnétique. En mécanique classique, nous utilisons un Hamiltonien pour décrire la dynamique d'une particule chargée dans un domaine soumis à un champ magnétique. Nous nous intéressons ici à deux problèmes classiques de physique : le problème de confinement et le problème de scattering. Dans le cas quantique, nous étudions le problème spectral du laplacien magnétique au niveau semi-classique dans des domaines de dimension deux: sur une variété Riemanienne compacte à bord et dans ℝ ². En supposant que le champ magnétique ait un unique minimum strictement positif et non-dégénéré, nous pouvons décrire les fonctions propres par les méthodes WKB. Grâce au théorème spectral, nous pouvons estimer efficacement les vraies fonctions propres et les fonctions propres approchées localement proche du minimum du champ magnétique. Dans ℝ ², sous l'hypothèse additionnelle d'une symétrie radiale du champ magnétique, nous pouvons montrer que les fonctions propres du laplacien magnétique décroissent de manière exponentielle à l'infini avec une vitesse contrôlée par la fonction phase de la procédure WKB. De plus, les fonctions propres sont très bien approchées dans un espace à poids exponentiel. / This manuscript is devoted to classical mechanics and quantum mechanics, especially in the presence of magnetic field. In classical mechanics, we use Hamiltonian dynamics to describe the motion of a charged particle in a domain affected by the magnetic field. We are interested in two classical physical problems: the confinement and the scattering problem. In the quantum case, we study the spectral problem of the magnetic Laplacian at the semi-classical level, in two-dimensional domains: on a compact Riemmanian manifold with boundary and on ℝ ². Under the assumption that the magnetic field has a unique positive and non-degenerate minimum, we can describe the eigenfunctions by WKB methods. Thanks to the spectral theorem, we estimated efficiently the true eigenfunctions and the approximate eigenfunctions locally near the minimum point of the magnetic field. On ℝ ², with the additional assumption that the magnetic field is radially symmetric, we can show that the eigenfunctions of the magnetic Laplacian decay exponentially at infinity and at a rate controlled by the phase function created in WKB procedure. Furthermore, the eigenfunctions are very well approximated in an exponentially weighted space.
|
4 |
Études de petites valeurs propres du Laplacien de WittenLe Peutrec, Dorian 08 June 2009 (has links) (PDF)
Dans cette thèse, nous nous inté́ressons à l'é́tude précise de valeurs propres exponentiellement petites du Laplacien de Witten. Plus particulièrement, nous considérons la ré́alisation autoadjointe du Laplacien de Witten agissant sur les fonctions, sur une variété à bord, avec conditions au bord de type Neumann. Cette étude prolonge et complète des travaux de B. Helffer, M. Klein et F. Nier dans le cas sans bord, et de B. Helffer et F. Nier dans le cas d'une varié́té́ à bord, avec conditions au bord de type Dirichlet. La prise en compte de conditions au bord de type Neumann demande de traiter l'analyse au bord avec un niveau de géné́ralité plus large que dans les travaux antérieurs. En particulier la construction de solutions WKB doit être abordée dans le cadre géné́ral des p-formes.
|
5 |
Résonances de Ruelle à la limite semiclassique / Ruelle resonances in the semiclassical limitArnoldi, Jean-François 18 October 2012 (has links)
Depuis Ruelle, puis Rugh, Baladi, Tsujii, Liverani et d'autres, on sait que la fuite vers l'équilibre statistique dans de nombreux systèmes dynamiques chaotiques est gouvernée par le spectre de résonances de Ruelle de l'opérateur de transfert. A la suite de récents travaux de Faure, Sjöstrand et Roy, cette thèse propose une approche semiclassique de systèmes dynamiques chaotiques de type partiellement expansifs. Une partie du mémoire est consacrée aux extensions d'applications expansives vers des groupes de Lie compacts, en se reistreignant essentiellement aux extensions vers le groupe spécial unitaire SU(2). On se sert de la théorie des états cohérents pour les groupes de Lie, développée dans les années 70 par Perelomov et Gilmore, pour mettre en oeuvre les outils semiclassiques et la théorie des résonances de Helfer et Sjöstrand. On en déduira une estimation de Weyl et un gap spectral pour les résonances de Ruelle prouvant que la fuite vers l'équilibre statistique dans ces modèles est gouvernée par un opérateur de rang fini (en accord avec les résultats obtenus par Tsujii pour les semi-flots partiellement expansifs). On étend ensuite cette approche aux modèles "ouverts" pour lesquels la dynamique présente un ensemble captif de Cantor. On montrera l'existence d'un spectre discret de résonances de Ruelle et on prouve une loi de Weyl fractale, analogue classique du théorème de Lin-Guillopé-Zworski pour les résonances du laplacien hyperbolique sur les surfaces à courbure négative constante. On montre aussi un gap spectral asymptotique. On expliquera pourquoi ces modèles semblent être des objets d'étude adaptés pour approcher des questions importantes et difficiles du chaos classique ou quantique. On pense en particulier au problème de la minoration du nombre de résonances, étudié dans le contexte des applications quantiques par Nonnenmacher et Zworski. / Since the work of Ruelle, then Rugh, Baladi, Tsujii, Liverani and others, it is kown that the convergence towards statistical equilibrium in many chaotic dynamical systems is gouverned by the Ruelle spectrum of resonances of the so-called transfer operator. Following recent works from Faure, Sjöstrand and Roy, this thesis gives a semiclassical approach for partially expanding chaotic dynamical systems. The first part of the thesis is devoted to compact Lie groups extenstions of expanding maps, essentially restricting to SU(2) extensions. Using Perlomov's coherent state theory for Lie groups, we apply the semiclassical theory of resonances of Helfer and Sjöstrand. We deduce Weyl type estimations and a spectral gap for the Ruelle resonances, showing that the convergence towards equilibrium is controled by a finite rank operator (as Tsujii already showed for partially expanding semi-flows). We then extend this approach to "open" models, for which the dynamics exhibits a fractal invariant reppeler. We show the existence of a discrete spectrum of resonances and we prove a fractal Weyl law, the classical analogue of Lin-Guillopé-Zworski's theorem on resonances of non-compact hyperbolic surfaces. We also show an asymptotic spectral gap. Finally we breifly explain why these models are interseting "toy models" to explore important questions of classical and quantum chaos. In particular, we have in mind the problem of proving lower bounds on the number of resonances, studied in the context of open quantum maps by Nonnenmacher and Zworski.
|
6 |
Étude mathématique et numérique des résonances dans une micro-cavité optique / Mathematical and numerical study of resonances in optical micro-cavitiesMoitier, Zoïs 03 October 2019 (has links)
Cette thèse est consacrée à l'étude des fréquences de résonance de cavités optiques bidimensionnelles. Plus particulièrement, on s'intéresse aux résonances à modes de galerie (modes localisés au bord de la cavité avec un grand nombre d'oscillations). La première partie traite du calcul numérique des résonances par la méthode des éléments finis à l'aide de couches parfaitement adaptées, et d'une analyse de sensibilité des paramètres de celles-ci dans les trois situations suivantes : un problème unidimensionnel, une réduction du cas bidimensionnel invariant par rotation et le cas général. La deuxième partie porte sur la construction de développements asymptotiques des résonances à modes de galerie quand le nombre d'oscillations le long du bord tend vers l'infini. On considère d'abord le cas d'un problème invariant par rotation pour lequel le nombre d'oscillations s'interprète comme un paramètre semiclassique grâce à la transformée de Fourier angulaire. Ensuite, pour le cas général, la construction utilise un ansatz phase-amplitude de type BKW qui permet de se ramener à un opérateur de Schrödinger généralisé. Enfin, les résonances calculées numériquement dans la première partie sont comparées aux développements asymptotiques explicités par calcul formel. / This thesis is devoted to the study of resonance frequencies of bidimensional optical cavities. More specifically, we are interested in whispering-gallery modes (modes localized along the cavity boundary with a large number of oscillations). The first part deals with the numerical computation of resonances by the finite element method using perfectly matched layers, and with a sensibility analysis in the three following situations: an unidimensional problem, a reduction of the rotationally invariant bidimensional case, and the general case. The second part focuses on the construction of asymptotic expansions of whispering-gallery modes as the number of oscillations along of boundary goes to infinity. We start by considering the case of a rotationally invariant problem for which the number of oscillations can be interpreted as a semiclassical parameter by means of an angular Fourier transform. Next, for the general case, the construction uses a phase-amplitude ansatz of WKB type which leads to a generalized Schrödinger operator. Finally, the numerically computed resonances obtained in the first part are compared to the asymptotic expansions made explicit by the use of a computer algebra software.
|
7 |
Approche géométrique de la limite semi-classique par les états cohérents et mécanique quantique sur le toreFaure, F. 03 November 1993 (has links) (PDF)
Cette thèse est consacrée à des problèmes liés à l'étude de la limite semi-classique en mécanique quantique. Le premier chapitre présente une formulation géométrique qui est équivalente au principe variationnel. Elle consiste à concevoir la dynamique classique comme une projection orthogonale de la dynamique quantique sur la famille des états cohérents. L'angle de la projection nous renseigne sur la validité de l'approximation obtenue. Ces résultats sont illustrés par un exemple numérique. Le deuxième chapitre s'attache à la mécanique quantique sur le tore en tant qu'espace de phase, et en particulier à l'étude des dégénérécences dans le spectre de modèles du type Harper, ou Harper pulsé qui manifestent du chaos classique. Ce type de modèles trouve ses applications essentiellement en physique du solide, notamment pour l'effet Hall quantique. Cette étude se fait d'une part à l'aide de l'indice de Chern qui caractérise de fa¸con topologique la local- isation des fonctions d'ondes lorsque des conditions de périodicité sont changées, et d'autre part par la distribution de Husimi permet de représenter un état quantique dans l'espace de phase. Nous discutons le rˆole joué par les états associés à une séparatrice, par l'effet tunnel et par la nature chaotique de la dynamique.
|
Page generated in 0.0813 seconds