1 |
Quasinormal modes for spin-3/2 particles in N-dimensional Schwarzschild black hole space timesHarmsen, Gerhard Erwin January 2016 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of requirements for the degree of Master of Science. Johannesburg, June 2016. / This dissertation will focus on spin-3/2 perturbations on N-dimensional Schwarzschild
black holes, with the aim of calculating the numerical values for the quasi-normal modes
(QNMs) and absorption probabilities associated with these perturbations. We begin
by determining the spinor-vector eigenmodes of our particles on an (N-2)-dimensional
spherical background. This allows us to separate out the angular part and radial part
on our N-dimensional Schwarzschild metric. We then determine the equations of motion
and e ective potential of our particles near the N-dimensional black hole. Using
techniques such as the Wentzel-Kramers-Brillouin and Improved Asymptotic Iterative
Method we determine our QNMs and absorption probabilities. We see that higher dimensional
black holes emit QNMs with larger real and imaginary values, this would
imply they emit higher energy particles but that these particles are highly dampened
and therefore would be di cult to detect. The results of the QNMs make sense if we also
consider the e ective potential surrounding our black holes with the potential function
increasing with increasing number of dimensions.
|
2 |
Linear Stability of Schwarzschild SpacetimeKeller, Jordan January 2017 (has links)
In this work, we study the theory of linearized gravity and prove the linear stability of Schwarzschild black holes as solutions of the vacuum Einstein equations. In particular, we prove that solutions to the linearized vacuum Einstein equations centered at a Schwarzschild metric, with suitably regular initial data, remain uniformly bounded and decay to a linearized Kerr metric on the exterior region. Our method employs Hodge decomposition to split the solution into closed and co-closed portions, respectively identified with even-parity and odd-parity solutions in the physics literature. For both portions, we derive Regge-Wheeler type equations for decoupled, gauge-invariant quantities at the level of perturbed connection coefficients. A general framework for the analysis of Regge-Wheeler type equations is presented, identifying sufficient conditions for decay estimates. With the choice of an appropriate gauge in each of the two portions, such decay estimates on these decoupled quantities are used to establish decay of the linearized metric coefficients, completing the proof of linear stability. The initial value problem is formulated on Cauchy data sets, complementing the work of Dafermos-Holzegel-Rodnianski [6], where the linear stability of Schwarzschild is established for characteristic initial data sets.
|
3 |
Distorted black holes and black stringsShoom, Andrey A. January 2009 (has links)
Thesis (Ph. D.)--University of Alberta, 2009. / Title from pdf file main screen (viewed on Jan. 5, 2010). "A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy, Department of Physics, University of Alberta." Includes bibliographical references.
|
4 |
Sur la dynamique des fluides dans le domaine de communication extérieur d'un espace-temps de Schwarzschild / Fluid dynamics in the domain of outer communication of a Schwarzschild black holeXiang, Shuyang 05 July 2017 (has links)
Cette thèse est consacrée à la dynamique globale d’un fluide évoluant dans le domaine de communication extérieur d’un espace-temps de Schwarzschild. Dans le premier chapitre, on formule le problème de Cauchy pour le modèle d’Euler relativiste dans la classe des solutions à la variation bornée contenant des ondes de choc. On propose ensuite une version de la méthode de Glimm fondée sur les solutions stationnaires globales hors du trou noir et le problème de Riemann généralisé et on démontre un théorème d’existence globale en temps pour les écoulements de fluides faiblement réguliers. Dans le deuxième chapitre, on considère le modèle de Burgers relativiste. Nous introduisons une version de la variation totale qui est décroissante en temps pour les solutions générales du problème de Cauchy. Nous avons aussi utilisé les caractéristiques généralisées pour démontrer la stabilité nonlinéaire d’une solution stationnaire par morceaux. Dans le troisième chapitre, nous pr étudions plusieurs méthodes numériques basées sur la géométrie de Schwarzschild et nous étudions numériquement la stabilité nonlinéaire des solutions stationnaires et le comportement asymptotique des solutions générales. Les schémas propos ́es fournissent un outils numérique capable de préserver exactement les équilibres et nous permettent d’analyser l’evolution de fluides en présence d’effets géométriques. Dans le quatrième chapitre, nous présentons un modèle non-relativiste préservant certains effets du trou noir de Schwarzschild. / This thesis is devoted to fluid dynamics evolving in the domain of outer communication of a Schwarzschild black hole. In the first chapter, we formulate the initial value problem of the relativistic Euler model within a class of weak solutions with bounded variation, possibly containing shock waves. We then introduce a version of the random choice method founded on the global steady state solutions and the generalized Riemann problem and we establish a global-in-time existence theory for the initial value problem within the proposed class of weakly regular fluid flows. In the second chapter, we consider the relativistic Burgers model. We have introduced a version of the total variation which is decreasing with respect to time in the Cauchy problem. We also use the generalized characteristics to prove the nonlinear stability of a piecewise steady state solution. In the third chapter, we present some numerical methods based on the Schwarzschild geometry and study numerically the nonlinear stability of steady state solutions and the asymptotic behavior of a general solutions. The proposed schemes provide a numerical tool capable to preserve exactly the equilibria and allow us to analyse the evolution of fluids with the geometry effects.
|
5 |
Geodesic Geometry of Black HolesSlezakova, Gabriela January 2006 (has links)
The study of geodesics is of intrinsic significance in the study of the geometry of space-time. In this thesis null, space-like and time-like geodesics are studied in the case of the space-times of Schwarzschild, Reissner-Nordstrouml;m and Kerr black holes. These space-times have been investigated with varying degrees of thoroughness in many articles and some books. However, there are some significant gaps in these treatments and the central aim of this thesis is to fill these gaps where necessary. Moreover, the following topics are covered for the first time. 1. In Chapter 4 a thorough treatment of the space-like geodesics of the Schwarzschild solutions has been given. These geodesics are the trajectories of Tachyons (faster than light particles) and are treated in a complete manner. This has been done by obtaining exact solutions and solving them numerically. 2. In Part II all solutions for geodesics for a Reissner-Nordstrouml;m black hole have been given in complete detail, i.e. time-like, null and space-like geodesics and orbit of a charged particle. 3. In Chapter 14 all solutions for geodesics in the equatorial plane of a Kerr black hole have been given in complete detail, i.e. time-like, null and space-like geodesics. 4. The study of special types of non-equatorial geodesics for a Kerr black hole have been given in complete detail, i.e. time-like (Chapter 17), null (Chapter 15) and space-like (Chapter 16). This has been done in order to distinguish the qualitatively different types of solutions. Calculation of the explicit formulas, which describe these geodesics, as well as numerically computed diagrams representing the geodesics have been incorporated in these studies. The following subjects have been also treated: 5. Solutions for the geodesics in Reissner-Nordstrouml;m black holes with |Q_*| gt;= M, which are black holes with one (|Q_*| = M) or no horizon (|Q_*|gt; M) (Chapter 8). 6. Solutions of geodesics in extreme and fast Kerr black holes, i.e. black holes with a = M (extreme) and a gt; M (fast). As in the case of |Q_*| gt; M, fast black holes have naked singularities (Chapter 14). 7. Some general observations about orbit types of the Kerr black holes regarding relationships between parameters such as angular momentum, energy, Carter constant and mass and angular momentum of black holes (Chapter 13). 8. Some corrections to errors found in the literature. While it has not been possible to cover all different cases which occur for possible relations amongst the parameters specifying a general black hole, interesting geodesics have, however, been studied and a more thorough presentation of the properties of geodesics has now been given.
|
6 |
1/f fluctuations in spinning-particle motions around a Schwarzschild black holeKoyama, Hiroko, Kiuchi, Kenta, Konishi, Tetsuro 09 1900 (has links)
No description available.
|
7 |
Motion of test particles under the influence of external forces in curved spacetimeSundström Curstedt, Johan, Nordmark, Ruben January 2024 (has links)
While Newton’s law of gravity suffices for travelling nearby a planetary body, massive objects such as black holes require the more advanced theory of general relativity. To successfully fly a rocket in the vicinity of such an object, a first step is the description of test particle trajectories. In this report, the equations of motion for test particles affected by external forces are derived and used for simulations on a range of examples within the framework of general relativity. An application for these equations is found in the force required to counteract gravity, regardless of any non-radial motion around the black hole. Then, the equations of motion for a rocket test particle, which accelerates by expelling mass, are formulated for radial motion and used to find optimal mass conserving radial trajectories.
|
8 |
CAMPO DE BUMBLEBEE EM UM ESPAÃO DE SCHWARZSCHILD / BUMBLEBEE FIELD IN A SCHWARZSCHILD SPACERafael Rocha de Farias 21 February 2017 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / O objetivo deste trabalho à aplicar o modelo de bumblebee, um modelo de quebra de
simetria espontÃnea de Lorentz gerada por um quadri-vetor de valor esperado de
vÃcuo nÃo-nulo, a um espaÃo de vÃcuo. Apresentamos resultados para quebra de
simetria de Lorentz radial/temporal em um espaÃo de Schwarzschild. AlÃm disso, Ã
verificada uma incompatibilidade entre a hipÃtese de o universo ser homogÃneo
quando nÃo hà presenÃa de matÃria massiva ordinÃria e a imposiÃÃo de um campo de bumblebee paralelamente transportado na direÃÃo radial. / The objective of this work is apply bumblebee model, a spontaneously Lorentz symmetry breaking model due to a non-vanishing vacuum expectation value vector field, to a vacuum space. Results are presented for a radial/temporal Lorentz
symmetry breaking in a Schwarzschild space. Also, it is verified an incompatibility between the hypothese of the universe to be homogenous in the absence of massive ordinary matter and the imposition of a parallelly transported bumblebee field in radial direction.
|
9 |
Campo de Bumblebee em um espaço de Schwarzschild / Bumblebee field in a Schwarzschild spaceFarias, Rafael Rocha de January 2017 (has links)
FARIAS, R. R. de. Campo de Bumblebee em um espaço de Schwarzschild. 2017. 50 f. Dissertação (Mestrado em Física) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by Giordana Silva (giordana.nascimento@gmail.com) on 2017-04-18T17:43:12Z
No. of bitstreams: 1
2017_dis_rrdfarias.pdf: 1718443 bytes, checksum: 9a06da2d884c3d3904afd2c830e42bce (MD5) / Approved for entry into archive by Giordana Silva (giordana.nascimento@gmail.com) on 2017-04-18T17:44:06Z (GMT) No. of bitstreams: 1
2017_dis_rrdfarias.pdf: 1718443 bytes, checksum: 9a06da2d884c3d3904afd2c830e42bce (MD5) / Made available in DSpace on 2017-04-18T17:44:06Z (GMT). No. of bitstreams: 1
2017_dis_rrdfarias.pdf: 1718443 bytes, checksum: 9a06da2d884c3d3904afd2c830e42bce (MD5)
Previous issue date: 2017 / The objective of this work is apply bumblebee model, a spontaneously Lorentz symmetry breaking model due to a non-vanishing vacuum expectation value vector field, to a vacuum space. Results are presented for a radial/temporal Lorentz symmetry breaking in a Schwarzschild space. Also, it is verified an incompatibility between the hypothese of the universe to be homogenous in the absence of massive ordinary matter and the imposition of a parallelly transported bumblebee field in radial direction. / O objetivo deste trabalho é aplicar o modelo de bumblebee, um modelo de quebra de simetria espontânea de Lorentz gerada por um quadri-vetor de valor esperado de vácuo não-nulo, a um espaço de vácuo. Apresentamos resultados para quebra de simetria de Lorentz radial/temporal em um espaço de Schwarzschild. Além disso, é verificada uma incompatibilidade entre a hipótese de o universo ser homogêneo quando não há presença de matéria massiva ordinária e a imposição de um campo de bumblebee paralelamente transportado na direção radial.
|
10 |
Black Holes and Scalar Fields : A study of a massive scalar field around a black holeGhazal, Abdulmasih January 2022 (has links)
Black holes are one of the most interesting objects in the universe, and studying these objects should give exciting results. This research will investigate the General Theory of Relativity, explaining the essence of the theory needed for deriving solutions for a Schwarzschild black hole. This knowledge leads to deriving the equations of motion of a bosonic scalar field around a Schwarzschild black hole. Computing the dynamical evolution of that scalar field, and taking the limit far away from the black hole, gives an approximation derivation of the Schrödinger equation. This study opens many doors to future research about black holes and scalar fields. / Svarta hål är ett av de mest intressanta objekten i universum, och därför, att studera dessa föremål bör ge spännande resultat.I detta arbete kommer den allmänna relativitetsteorin att studeras och förklaras med allt som behövs för att härledalösningar för en Schwarzschild svart hål. Denna kunskap leder till att härleda rörelseekvationerna för ett bosoniskt skalärfält runt ett Schwarzschild svart hål.Genom att beräkna den dynamiska utvecklingen av det skalära fältet och ta gränsen långt bort från svarta hålet,så kommer det at ge en approximativ härledning av Schrödinger ekvationen. Den här typen av studier öppnar många dörrar för framtida forskning om svarta hål och skalära fält.
|
Page generated in 0.0361 seconds