Spelling suggestions: "subject:"schwering"" "subject:"japankärpfling""
1 |
Untersuchungen zur genetischen Kontrolle des Melanom-induzierenden Gens von Xiphophorus / Analyses for the genetic control of the melanoma inducing gene of XiphophorusGutbrod, Heidrun January 1999 (has links) (PDF)
Die Melanomentstehung bei Rückkreuzungshybriden des Zahnkarpfens Xiphophorus wird durch die Überexpression des geschlechtschromosomalen Xmrk Onkogens verursacht. Im Wildtyp ist die Aktivität von Xmrk durch einen autosomalen Regulatorlocus R unterdrückt. Ziel dieser Arbeit war es, Erkenntnisse über die Expressionsregulation des Xmrk Onkogens zu gewinnen. Dazu wurden einerseits Experimente zur Kartierung von R durchgeführt, die eine Positionsklonierung des Gens erlauben würden. Zum anderen konnte durch die Analyse verschiedener Xmrk Mutanten ein genregulatorisches Element im Xmrk Onkogen identifiziert werden. / The development of melanomas in Xiphophorus backcross hybrids is caused by overexpression of the sex linked oncogene Xmrk. The activity of Xmrk is repressed in wildtype fish by an autosomal regulatory locus, R. Aim of this study was to get insights into the regulation of the expression of the Xmrk oncogene. The work included experiments for mapping of R which is a prerequisite for a positional cloning strategy. The analysis of several Xmrk mutants led to the identification of a gene regulatory element in the Xmrk oncogene.
|
2 |
Melanomspezifische Genexpression und Signaltransduktion bei Xiphophorus: Die Rolle des Transkriptionsfaktors Mitf / Melanoma specific genexpression and signal transduction in Xiphophorus: The role of the transcription factor MitfDelfgaauw, Jacqueline January 2003 (has links) (PDF)
Die Kenntnis der Transkriptionsregulationsmechanismen stellt eine wichtige biochemische Grundlage für das Verständnis der molekularen Ereignisse, die der Krebsentstehung zugrunde liegen, dar. Eine Schlüsselrolle in der transkriptionellen Kontrolle der Genexpression spielen hierbei die Transkriptionsfaktoren. Diese sind nukleäre Proteine, die mit spezifischen DNA-Elementen interagieren und so die Transkription eines in cis-Position lokalisierten Zielgens regulieren. Da der “microphthalmia associated” Transkriptionsfaktor Mitf-M spezifisch in Melanozyten und Melanomzellen exprimiert wird, scheint er eine wichtige Rolle in der melanomspezifischen transkriptionellen Aktivierung zu spielen und war deshalb im Rahmen dieser Arbeit näher untersucht worden. Das Xiphophorus Melanomsystem, ein genetisch gut charakterisiertes Modell, wurde herangezogen, um unter zu Hilfenahme des Tyrosinasegens des mit Xiphophorus nahe verwandten Medaka (Oryzias latipes) die Transkriptionsregulation im Melanom näher zu untersuchen. Zuerst wurde gezeigt, dass der Medaka Tyrosinasepromotor spezifisch in einer Melanomzellinie von Xiphophorus (PSM Zellen) aktiviert wird. Eine 3,2 kb lange Sequenz, die 5´ zum Transkriptionsstart liegt, reicht dabei aus, eine extrem hohe, melanomspezifische Promotoraktivität zu erreichen. Dabei sind die Regionen, die sogenannte E-Boxen (CANNTG) enthalten, von besonderer Wichtigkeit für die Promotoraktivität in der Melanomzellinie, während sie in embryonalen Xiphophoruszellen (A2, als Kontrollzellen eingesetzt) keinen Einfluß auf die Expression haben. An diese E-Box-Sequenzen binden sogenannte b-HLH-Leuzinzipper Transkriptionsfaktoren. Es konnte auf indirektem Wege bewiesen werden, dass es das Protein Mitf sein muß, das an die E-Boxen im Tyrosinasegenpromotor bindet und somit die transkriptionelle Aktivierung ausübt. In EMSA Studien wurde gezeigt, dass die E-Boxen ein Kernprotein aus PSM-Zellen binden, und das dieses spezifisch an diese 6 bp lange Sequenz bindet, da Mutationen der zentralen Oligonukleotid-Sequenz die Bindung zerstörten. Ein weiterer indirekter Beweis für die Bindung von Mitf an diese E-Boxen konnte durch Co-Transfektionsexperimente erbracht werden. Auch in Säugerfibroblastenzellen konnte ektopisch eingebrachtes Mitf-M die Medaka Tyrosinasegenpromotorkonstrukte durch Bindung an E-Boxen aktivieren und das Luciferasegen zur Expression bringen. Das heißt also, dass Mitf-M ausreicht um sogar in nicht-Melanomzellen den Tyrosinasegenpromotor zu transaktivieren. Aufgrund dieser verschiedenen Experimente konnte gefolgert werden, dass diese Mitf-Bindungsstellen essentiell für eine hohe melanom- oder pigmentzellspezifische Promotoraktivität sind. Die Bindungsstelle A, die nahe der Basalpromotorregion im Medaka Tyrosinasegen liegt (-126/-131), scheint hierbei besonders wichtig für die Promotoraktivität und vor allem auch für die Vermittlung der Zelltypspezifität zu sein. Promotorkonstrukte mit den drei E-Boxen A (-126/-131), B (-2651/-2656) und C (-2866/-2871) zeigten eine gegenüber dem Konstrukt nur mit der A-Bindungsstelle höhere Aktivität. Es scheint sich ein additiver Effekt der Mitf-Bindungsstellen auszuwirken. Es konnte allerdings auch gezeigt werden, dass die E-Boxen nicht alleine verantwortlich für die Melanom- bzw. Pigmentzellspezifität sind. Neben den Mitf-Bindungsstellen gibt es noch weitere Elemente im Tyrosinasegenpromotor, die an der Bestimmmung der Spezifität beteiligt sind, und die zwar durch Deletionsreihen im Promotor eingegrenzt, dennoch noch nicht eindeutig bestimmt werden konnten. Die Wichtigkeit des Transkriptionsfaktors Mitf bzw. seiner Funktionen spiegelt sich auch in seiner starken Konservierung im Laufe der Evolution wider. Vergleichende Studien zeigten dass der Transkriptionsfaktor mit seinen verschiedenen Isoformen in Säugern wie in Vertebraten gut konserviert wurde. Nähere Analysen konnten das Vorhandensein zweier separater Gene für Mitf-M und Mitf-B bei Teleostiern nachweisen, während bei Säugetieren und Vögeln nur ein einziges Gen für die unterschiedlichen Mitf Proteine kodiert. Für das Verständnis der molekularen Prozesse bei der Melanombildung von Xiphophorus war es wichtig die Rolle von Mitf in der Signaltransduktion zu analysieren. Es war möglich einen direkten Zusammenhang zwischen der in PSM Zellen exprimierten Rezeptortyrosinkinase Xmrk, dem Genprodukt des Tumor-induzierenden Onkogens von Xiphophorus, und dem Transkriptionsfaktor Mitf nachzuweisen und seine Regulation über Signaltransduktionswege näher zu klären. Die Regulation von Mitf über den MAPkinase-Weg, konnte durch Inhibitorexperimente nachgewiesen werden. Aufgrund der zahlreichen Aktivitäten von Mitf innerhalb der Melanozyten, und seiner Aktivierungsfunktion für verschiedene Zielgene, ist dieser Transkriptionsfaktor von großer Bedeutung für sowohl Differentierung/Pigmentierung wie auch Proliferation/Überleben der Tumorzellen. / The analysis of transcriptional regulation is the essential biochemical basis for understanding the molecular mechanisms underlying cancer development. A key role in the transcriptional control of gene expression is played by transcription factors. These are nuclear proteins, interacting with specific DNA elements and thereby regulating the transcription of a target gene, which is located in cis position. The microphthalmia associated transcription factor Mitf-M, which is expressed specifically in melanocytes and melanoma cells seems to play an important role in the melanoma specific transcriptional activation. This thesis therefore focused on the function and the role of Mitf. The genetically well characterized Xiphophorus melanoma system was used as a model. Utilizing the tyrosinase gene of the closely related Medaka (Oryzias latipes) the transcriptional regulation in melanoma was investigated. First it was shown that the Medaka tyrosinase promoter was activated specifically in a melanoma cell line from Xiphophorus (PSM cells). A 3,2 kb sequence upstream the transcription start is sufficient for a high melanoma specific promoter activation. The region containing so called E-boxes (CANNTG) is of special importance for the promoter activity in the melanoma cell line whereas in embryonic cells from Xiphophorus (A2 cells, as control) the E-boxes had no influence on the expression. Members of the b-HLH-leucin zipper transcription factor family bind to this E-boxes. An indirect approach showed that it has to be the protein Mitf that binds to the E-boxes in the promoter of the tyrosinase gene and thereby mediates transcriptional activation. EMSA studies revealed a nuclear protein from PSM cells binding to the E-boxes. This binding occurs specifically to the 6 bp core sequence since mutations of the central oligonucleotid sequence destroyed the binding. An further indirect proof for the binding of Mitf to the E-boxes and thus regulation by Mitf, was obtained through co-transfection experiments. Ectopically delivered Mitf-M even in mammalian fibroblasts activated tyrosinase gene promoter constructs via binding to the E-boxes and by that mediated expression of the luciferase gene. Mitf-M is sufficient to transactivate the tyrosinase gene promoter even in non-melanoma cells. On the basis of these experiments it was concluded that the Mitf binding sites are essential for a high melanoma or pigment cell specific promoter activity. The binding site A, located near the basal promoter region in the Medaka tyrosinase gene (-126/-131), appears to be of a special importance for the promoter activity and for the mediation of tissue specificity. In comparison with the construct only with binding site A, the promoter constructs with all three E-boxes A (-126/-131), B (-2651/-2656) and C (-2866/-2871) showed a higher activity. This seems to be an additive effect of the Mitf binding sites. But it could be shown as well that it are not the E-boxes alone that are responsible for melanoma specificity. Besides the Mitf binding sites there exist further elements in the tyrosinase gene promoter that contribute to the specificity. Experiments with deletion constructs could help to narrow down these elements in the promoter, but they are not yet precisely determined. The importance of the transcription factor Mitf and its functions is reflected as well in its strong evolutionary conservation. Comparative studies showed that the transcription factor with its different isoforms is well conserved between mammals and lower vertebrates. More detailed analysis proved the presence of two separate genes for Mitf-M and Mitf-B in teleosts, whereas in mammals and birds only one single gene exists, coding for the different Mitf proteins. For understanding the molecular mechanisms of melanoma formation in Xiphophorus it was important to analyse the role of Mitf in signal transduction in the tumor cells. It was possible to demonstrate a direct link between the receptor tyrosine kinase Xmrk, the gene product of the tumor inducing oncogene in Xiphophorus, which is expressed in PSM cells and Mitf, and to contribute to its regulation in signal transduction pathways. A regulation of Mitf by the MAPkinase pathway was shown by inhibitor experiments. Because of the numerous activities of Mitf in melanocytes this transcription factor plays a pivotal role in the activation of various genes of high importance for differentiation/pigmentation as well as proliferation/survival of the cells.
|
3 |
Characterisation and regulation of the Egfr/Egfr ligand system in fish models for melanomaLaisney, Juliette Agnès Geneviève Claire January 2010 (has links) (PDF)
Fish of the genus Xiphophorus belong to the oldest animal models in cancer research. The oncogene responsible for the generation of spontaneous aggressive melanoma encodes for a mutated epidermal growth factor receptor (Egfr) and is called xmrk for Xiphophorus melanoma receptor kinase. Xmrk constitutive activation mechanisms and subsequent signaling pathways have already been investigated and charaterized but it is still unknown if Egfr ligands may also play a role in Xmrk-driven melanoma formation. To investigate the potential role of Egfr ligands in Xmrk-driven melanoma, I firstly analyzed the evolution of teleost and tetrapod Egfr/Egfr ligand systems. I especially focused on the analysis on the medaka fish, a closely related species to Xiphophorus, for which the whole genome has been sequenced. I could identify all seven Egfr ligands in medaka and could show that the two teleost-specific Egfr copies of medaka display dissimilar expression patterns in adult tissues together with differential expression of Egfr ligand subsets, arguing for subfunctionalization of receptor functions in this fish. Our phylogenetic and synteny analyses supported the hypothesis that only one gene in the chordate ancestor gave rise to the diversity of Egfr ligands found in vertebrate genomes today. I also could show that the Egfr extracellular subdomains implicated in ligand binding are not evolutionary conserved between tetrapods and teleosts, making the use of heterologous ligands in experiments with fish cells debatable. Despite its well understood and straight-forward process, Xmrk-driven melanomagenesis in Xiphophorus is problematic to further investigate in vivo. Our laboratory recently established a new melanoma animal model by generating transgenic mitf::xmrk medaka fishes, a Xiphophorus closely related species offering many more advantages. These fishes express xmrk under the control of the pigment-cell specific Mitf promoter. During my PhD thesis, I participated in the molecular analysis of the stably transgenic medaka and could show that the Xmrk-induced signaling pathways are similar when comparing Xiphophorus with transgenic mitf::xmrk medaka. These data together with additional RNA expression, protein, and histology analyses showed that Xmrk expression under the control of a pigment cell-specific promoter is sufficient to induce melanoma in the transgenic medaka, which develop very stereotyped tumors, including uveal and extracutaneous melanoma, with early onset during larval stages. To further investigate the potential role of Egfr ligands in Xmrk-driven melanoma, I made use of two model systems. One of them was the above mentioned mitf::xmrk medaka, the other was an in-vitro cell culture system, where the EGF-inducible Xmrk chimera HERmrk is stably expressed in murine melanocytes. Here I could show that HERmrk activation strongly induced expression of amphiregulin (Areg) and heparin-binding EGF-like growth factor (Hbegf) in melanocytes. This regulation was dependent on the MAPK and SRC signaling pathways. Moreover, upregulation of Adam10 and Adam17, the two major sheddases of Egfr ligands, was observed. I also could demonstrate the functionality of the growth factors by invitro analyses. Using the mitf::xmrk medaka model I could also show the upregulation of a subset of ligand genes, namely egf, areg, betacellulin (btc) and epigen (epgn) as well as upregulation of medaka egfrb in tumors from fish with metastatic melanoma. All these results converge to support an Xmrk-induced autocrine Egfr ligand loop. Interestingly, my in-vitro experiments with conditioned supernatant from medaka Egf- and Hbegf-producing cells revealed that not only Xiphophorus Egfrb, but also the pre-activated Xmrk could be further stimulated by the ligands. Altogether, I could show with in-vitro and in-vivo experiments that Xmrk is capable of inducing a functional autocrine Egfr ligand loop. These data confirm the importance of autocrine loops in receptor tyrosine kinase (RTK)-dependent cancer development and show the possibility for a constitutively active RTK to strengthen its oncogenic signaling by ligand binding. / Fische der Gattung Xiphophorus gehören zu den ältesten Tiermodellen für die Krebsforschung. Das im Xiphophorus-System für die Melanomentstehung verantwortliche Onkogen codiert für eine mutierte Version des epidermalen Wachstumsfaktorrezeptors (Egfr) und wird xmrk (für “Xiphophorus melanoma receptor kinase”) genannt. Die konstitutiven Aktivierungsmechanismen dieses Rezeptors und die daraus resultierenden aktivierten Signalwege sind bereits gut untersucht und charakterisiert. Dennoch war bisher unbekannt, ob Egfr-Liganden auch eine Rolle bei der Xmrk-vermittelten Melanomentstehung spielen. Um eine potenzielle Rolle dieser Egfr-Liganden im Xmrk-induzierten Melanom zu erforschen, habe ich zunächst die Evolution des Egfr/Egfr-Liganden-Systems in Teleostiern und Tetrapoden untersucht. Hierfür fokussierte ich mich im besonderen auf den Medaka- Fisch, der zum einen eine nahe evolutionäre Verwandtschaft zu Xiphophorus aufweist und zum anderen – im Gegensatz zu Xiphophorus - ein komplett sequenziertes und gut annotiertes Genom besitzt. Ich konnte alle sieben Egfr-Liganden in Medaka identifizieren und konnte weiterhin zeigen, dass die zwei Teleost-spezifischen Egfr-Kopien dieses Fisches ein unterschiedliches Expressionsmuster in adulten Geweben aufweisen, welches außerdem mit unterschiedlicher Egfr-Liganden-Expression einherging. Diese Daten sprechen für eine Subfunktionalisierung der Egfr-Funktionen in Medaka. Unsere phylogenetischen und Syntenie-Analysen unterstützen die Hypothese, dass nur ein einziges Egfr-Liganden-Gen des Chordaten-Vorfahren der genetische Ursprung für die zahlreichen Egfr-Liganden-Gene, die in heutigen Vertrebraten zu finden sind, darstellt. Ich konnte weiterhin zeigen, dass die an der Ligandenbindung beteiligten Domänen des Egfr nicht zwischen Tetrapoden und Teleostiern konserviert sind. Diese Daten sprechen somit gegen die Verwendung heterologer Liganden in Zellkulturexperimenten mit Fischzellen. Trotz der gut verstandenen Konsequenzen einer Xmrk-Expression auf die Pigmentzelle lässt sich die Xmrk-vermittelte Melanomentstehung in Xiphophorus relativ schwer in vivo untersuchen. In unserem Labor wurde daher kürzlich ein neues Tiermodell für Melanome entwickelt. Dabei handelt es sich um einen mitf::xmrk-transgenen Medaka. Diese Fische exprimieren xmrk unter der Kontrolle des Pigmentzell-spezifischen Mitf-Promoters. Während meiner Doktorarbeit trug ich zur molekularen Analyse der stabil transgenen Tiere bei und konnte zeigen, dass die Xmrk-vermittelte Signalgebung in mitf::xmrk-Medakas der von Xmrk-exprimierenden Xiphophorus-Fischen gleicht. Diese Daten, zusammen mit weiteren RNA-Expressions-, Protein- und histologischen Analysen, zeigten, dass die Expression von xmrk unter der Kontrolle eines Pigmentzellspezifischen Promoters ausreichend für die Melanomentstehung in Medaka ist. Eine Besonderheit dieses Melanommodelles ist die auffallend stereotype Tumorentstehung. Der Beginn der Hyperpigmentierung wird bereits in frühen Larvenstadien sichtbar und führt – je nach Fischlinie – anschließend zuverlässig zu extrakutanen Pigmentzelltumoren oder invasiven bzw. uvealen Melanomen. Um eine potenzielle Funktion der Egfr-Liganden für Xmrk-induzierte Melanome zu untersuchen, machte ich mir zwei Modellsysteme zunutze. Eines der beiden Modelle war der bereits oben erwähnte mitf::xmrk-transgene Medaka, das andere war ein in-vitro- Zellkultursystem, bei dem die EGF-induzierbare Xmrk-Chimäre HERmrk stabil in murinen Melanozyten exprimiert wird. Hier konnte ich zeigen, dass HERmrk-Aktivierung zu einer starken Genexpression der EGFR-Liganden Amphiregulin (Areg) und Heparin-binding EGFlike growth factor (Hbegf) in Melanozyten führte. Diese Regulierung war abhängig von den MAPK- und SRC-Signalwegen. Weiterhin wurde eine Induktion von Adam10 und Adam17, den zwei bedeutsamsten Proteasen zur Freisetzung von EGFR-Liganden (“Sheddasen”), festgestellt. Ich konnte die Funktionalität der so sezernierten Liganden durch in-vitro- Experimente nachweisen. Anhand des mitf::xmrk Medaka-Modelles konnte ich ebenfalls zeigen, dass sowohl mehrere Egfr-Ligandengene, nämlich egf, areg, betacellulin (btc) und epigen (epgn), als auch egfrb in Tumoren von Medaka-Fischen mit metastatischen Melanomen heraufreguliert wurden. All diese Daten lassen auf einen durch Xmrk induzierten autokrinen EGFR-Liganden-Loop schließen. Interessanterweise zeigte sich durch in-vitro- Experimente mit konditioniertem Überstand von Medaka Egf- und Hbegf-produzierenden Zellen, dass nicht nur Xiphophorus Egfrb, sondern auch das bereits aktivierte Xmrk durch beide Liganden weiter stimuliert werden konnte. Zusammengefasst zeigen meine in-vitro- und in-vivo-Daten, dass Xmrk in der Lage ist, einen funktionalen autokrinen Egfr-Liganden-Loop zu induzieren. Dieses Ergebnis unterstreicht die Bedeutung autokriner Loops in Rezeptortyrosinkinasen (RTK)-abhängiger Tumorentstehung und zeigt auf, dass selbst die onkogene Signalgebung prädimerisierter RTKs durch Ligandenbindung verstärkt werden kann.
|
4 |
Dynamic regulation of the melanocortin 4 receptor system in body weight homeostasis and reproductive maturation in fish / Dynamische Regulation des Melanocortin-4-Rezeptor Systems bei der Körpergewichtshomöostase und der Fortpflanzungsreifung bei FischenLiu, Ruiqi January 2022 (has links) (PDF)
Puberty is an important period of life with physiological changes to enable animals to reproduce. Xiphophorus fish exhibit polymorphism in body size, puberty timing, and reproductive tactics. These phenotypical polymorphisms are controlled by the Puberty (P) locus. In X. nigrensis and X. multilineatus, the P locus encodes the melanocortin 4 receptor (Mc4r) with high genetic polymorphisms.
Mc4r is a member of the melanocortin receptors, belonging to class A G-protein coupled receptors. The Mc4r signaling system consists of Mc4r, the agonist Pomc (precursor of various MSH and of ACTH), the antagonist Agrp and accessory protein Mrap2. In humans, MC4R has a role in energy homeostasis. MC4R and MRAP2 mutations are linked to human obesity but not to puberty.
Mc4rs in X. nigrensis and X. multilineatus are present in three allele classes, A, B1 and B2, of which the X-linked A alleles express functional receptors and the male-specific Y-linked B alleles encode defective receptors. Male body sizes are correlated with B allele type and B allele copy numbers. Late-maturing large males carry B alleles in high copy number while early-maturing small males carry B alleles in low copy number or only A alleles. Cell culture co-expression experiments indicated that B alleles may act as dominant negative receptor mutants on A alleles.
In this study, the main aim was to biochemically characterize the mechanism of puberty regulation by Mc4r in X. nigrensis and X. multilineatus, whether it is by Mc4r dimerization and/or Mrap2 interaction with Mc4r or other mechanisms. Furthermore, Mc4r in X. hellerii (another swordtail species) and medaka (a model organism phylogenetically close to Xiphophorus) were investigated to understand if the investigated mechanisms are conserved in other species.
In medaka, the Mc4r signaling system genes (mc4r, mrap2, pomc, agrp1) are expressed before hatching, with agrp1 being highly upregulated during hatching and first feeding. These genes are mainly expressed in adult brain, and the transcripts of mrap2 co-localize with mc4r indicating a function in modulating Mc4r signaling. Functional comparison between wild-type and mc4r knockout medaka showed that Mc4r knockout does not affect puberty timing but significantly delays hatching due to the retarded embryonic development of knockout medaka. Hence, the Mc4r system in medaka is involved in regulation of growth rather than puberty.
In Xiphophorus, expression co-localization of mc4r and mrap2 in X. nigrensis and X. hellerii fish adult brains was characterized by in situ hybridization. In both species, large males exhibit strikingly high expression of mc4r while mrap2 shows similar expression level in the large and small male and female. Differently, X. hellerii has only A-type alleles indicating that the puberty regulation mechanisms evolved independently in Xiphophorus genus. Functional analysis of Mrap2 and Mc4r A/B1/B2 alleles of X. multilineatus showed that increased Mrap2 amounts induce higher cAMP response but EC50 values do not change much upon Mrap2 co-expression with Mc4r (expressing only A allele or A and B1 alleles). A and B1 alleles were expressed higher in large male brains, while B2 alleles were only barely expressed. Mc4r A-B1 cells have lower cAMP production than Mc4r A cells. Together, this indicates a role of Mc4r alleles, but not Mrap2, in puberty onset regulation signaling. Interaction studies by FRET approach evidenced that Mc4r A and B alleles can form heterodimers and homodimers in vitro, but only for a certain fraction of the expressed receptors. Single-molecule colocalization study using super-resolution microscope dSTORM confirmed that only few Mc4r A and B1 receptors co-localized on the membrane. Altogether, the species-specific puberty onset regulation in X. nigrensis and X. multilineatus is linked to the presence of Mc4r B alleles and to some extent to its interaction with A allele gene products. This is reasoned to result in certain levels of cAMP signaling which reaches the dynamic or static threshold to permit late puberty in large males.
In summary, puberty onset regulation by dominant negative effect of Mc4r mutant alleles is a special mechanism that is found so far only in X. nigrensis and X. multilineatus. Other Xiphophorus species obviously evolved the same function of the pathway by diverse mechanisms. Mc4r in other fish (medaka) has a role in regulation of growth, reminiscent of its role in energy homeostasis in humans. The results of this study will contribute to better understand the biochemical and physiological functions of the Mc4r system in vertebrates including human. / Die Pubertät ist ein wichtiger Lebensabschnitt mit physiologischen Veränderungen, die die Fortpflanzung von Tieren ermöglichen. Xiphophorus Fische weisen einen Polymorphismus in Bezug auf Körpergröße, Pubertätszeit und Fortpflanzungstaktik auf. Diese phänotypischen Polymorphismen werden durch den Pubertäts (P) Locus gesteuert. In X. nigrensis und X. multilineatus kodiert der P Locus den Melanocortin-4-Rezeptor (Mc4r) mit hohen genetischen Polymorphismen.
Mc4r gehört zu den Melanocortin-Rezeptoren, die zur Klasse A der G-Protein-gekoppelten Rezeptoren gehören. Das Mc4r-Signalsystem besteht aus Mc4r, dem Agonisten Pomc (Prohormon der verschiedenen MSH und des ACTH), dem Antagonisten Agrp und dem akzessorischen Protein Mrap2. Beim Menschen spielt MC4R eine Rolle bei der Energiehomöostase. MC4R und MRAP2 Mutationen stehen im Zusammenhang mit menschlicher Fettleibigkeit, jedoch nicht mit der Pubertät.
Mc4rs in X. nigrensis und X. multilineatus sind in drei Allelklassen vorhanden, A, B1 und B2, von denen die X-chromosomalen A Allele funktionelle Rezeptoren exprimieren und die spezifischen männlichen Y-chromosomalen B Allele für defekte Rezeptoren kodieren. Die männliche Körpergröße korreliert mit dem B Alleltyp und der Kopienzahl des B Allels. Spätreife große Männchen tragen B Allele in hoher Kopienzahl, während frühreife kleine Männchen B Allele in niedriger Kopienzahl oder nur A Allele tragen. Koexpressions-Experimente in Zellkultur zeigten, dass B Allele als dominant negative Mutanten-Rezeptor auf A Allele wirken können.
In dieser Studie war das Hauptziel die biochemische Charakterisierung des Mechanismus der Pubertätsregulation durch Mc4r in X. nigrensis und X. multilineatus. Dabei wurde untersucht, ob die Regulation durch eine Mc4r Dimerisierung und/oder Mrap2 Interaktion mit Mc4r oder durch andere Mechanismen erfolgt. Des Weiteren wurde Mc4r in X. hellerii (einer anderen Schwertträger Art) und Medaka (ein phylogenetisch naheliegender Modellorganismus von Xiphophorus) untersucht, um zu verstehen, ob die untersuchten Mechanismen in anderen Arten konserviert sind.
In Medaka werden die Gene des Mc4r Signalsystems (mc4r, mrap2, pomc, agrp1) vor dem Schlüpfen exprimiert, wobei agrp1 während des Schlüpfens und der ersten Fütterung stark hochreguliert wird. Im adulten Medaka werden diese Gene hauptsächlich im Gehirn exprimiert und die Transkripte von mrap2 und mc4r kolokalisieren, was auf eine Funktion bei der Modulation der Mc4r-Signaltransduktion hinweist. Ein funktionaler Vergleich zwischen Wildtyp- und mc4r-Knockout Medaka zeigte, dass der Mc4r-Knockout das Pubertäts-Timing nicht beeinflusst, das Schlüpfen jedoch aufgrund der verzögerten embryonalen Entwicklung von Knockout-Medaka signifikant verzögert. Daher ist das Mc4r System in Medaka eher an der Regulation des Wachstums als an der Pubertät beteiligt.
Bei Xiphophorus wurde die Lokalisierung von mc4r und mrap2 in erwachsenen Gehirnen von X. nigrensis und X. hellerii durch in situ Hybridisierung charakterisiert. Bei beiden Spezies zeigen große Männchen eine auffallend hohe Expression von mc4r, während mrap2 bei großen und kleinen Männchen und Weibchen ein ähnliches Expressionsniveau zeigt. Im Gegensatz dazu weist X. hellerii nur Allele vom A-Typ auf, was darauf hinweist, dass sich die Pubertätsregulationsmechanismen in dem Genus Xiphophorus unabhängig voneinander entwickelt haben. Die funktionelle Analyse der Mrap2 und Mc4r A/B1/B2 Allele von X. multilineatus zeigte, dass erhöhte Mrap2-Mengen eine höhere cAMP-Antwort induzieren, die EC50-Werte sich jedoch bei der Mrap2-Coexpression mit Mc4r nicht wesentlich ändern (nur A Allel oder A und B1 Allele). A und B1 Allele wurden in großen männlichen Gehirnen höher exprimiert, während B2 Allele kaum exprimiert wurden. Mc4r A-B1 Zellen haben eine geringere cAMP-Produktion als Mc4r A Zellen. Zusammengenommen deutet dies auf eine Rolle von Mc4r-Allelen, jedoch nicht von Mrap2, bei der Signalgebung zur Regulation des Pubertätsbeginns hin. Interaktionsstudien mit den FRET-Methoden zeigten, dass Mc4r A und B Allele in vitro Heterodimere und Homodimere bilden können, jedoch nur für einen bestimmten Anteil der exprimierten Rezeptoren. Die Einzelmolekül-co-lokalisierungsstudie unter Verwendung von der hochauflösenden Mikroskopiemethode dSTORM bestätigte, dass nur wenige Mc4r A und B1 Rezeptoren auf der Membran co-lokalisiert sind. Insgesamt ist die artspezifische Regulation des Pubertätsbeginns bei X. nigrensis und X. multilineatus auf das Vorhandensein von Mc4r B Allelen und teilweise auf deren Interaktion mit Genprodukten des A Allels zurückzuführen. Dies wird dadurch begründet, dass ein bestimmtes cAMP Niveau (statische oder dynamische Schwelle) erreicht werden muss, um die Pubertät einzuleiten. In großen Männchen wird dieses cAMP Niveau später erreicht und so die Pubertät später eingeleitet.
Zusammenfassend ist die Regulation des Pubertätsbeginns durch die dominante negative Wirkung von mutierten Mc4r Allelen ein spezieller Mechanismus, der bisher nur bei X. nigrensis und X. multilineatus zu finden ist. Andere Xiphophorus Arten haben offensichtlich durch andere Mechanismen die gleiche Funktion des Signalwegs entwickelt. In anderen Fischen (Medaka) spielt Mc4r eine Rolle bei der Regulation des Wachstums und erinnert an seine Rolle bei der Energie-Homöostase beim Menschen. Die Ergebnisse dieser Studie werden dazu beitragen, die biochemischen und physiologischen Funktionen des Mc4r-Systems bei Wirbeltieren, einschließlich Menschen, besser zu verstehen.
|
5 |
Die Rolle transposabler Elemente in der Genese des malignen Melanom im Fischmodell Xiphophorus / The role of transposable elements in malignant melanoma development in the Xiphophorus fish modelMünch, Luca January 2023 (has links) (PDF)
Der Name der transposablen Elemente beruht auf ihrer Fähigkeit, ihre genomische Position verändern zu können. Durch Chromosomenaberrationen, Insertionen oder Deletionen können ihre genomischen Transpositionen genetische Instabilität verursachen. Inwieweit sie darüber hinaus regulatorischen Einfluss auf Zellfunktionen besitzen, ist Gegenstand aktueller Forschung ebenso wie die daraus resultierende Frage nach der Gesamtheit ihrer biologischen Signifikanz. Die Weiterführung experimenteller Forschung ist unabdingbar, um weiterhin offenen Fragen nachzugehen. Das Xiphophorus-Melanom-Modell stellt hierbei eines der ältesten Tiermodelle zur Erforschung des malignen Melanoms dar. Durch den klar definierten genetischen Hintergrund eignet es sich hervorragend zur Erforschung des bösartigen schwarzen Hautkrebses, welcher nach wie vor die tödlichste aller bekannten Hautkrebsformen darstellt. Die hier vorliegende Arbeit beschäftigt sich mit der Rolle transposabler Elemente in der malignen Melanomgenese von Xiphophorus. / The term “transposable elements” (TEs) is based on their ability to change their genomic position. Through insertions, deletions or chromosomal aberrations, their genomic mobility can cause genetic instability. The extent to which they further exert regulatory influence on cellular functions is the subject of current research, as is the resulting question of their overall biological significance. To further pursue these questions the continuation of experimental research is indispensable. In this regard, the Xiphophorus- melanoma-model represents one of the oldest animal models for the study of malignant melanoma. Thanks to its clearly defined genetic background, it is excellently suited for research into melanoma, which continues to be the most lethal of all known forms of skin cancer. The work presented here investigated the role of transposable elements in malignant melanomagenesis of Xiphophorus.
|
6 |
Transcriptional regulation of cancer genes in the Xiphophorus melanoma system / Transkriptionelle Regulation von Krebsgenen im Xiphophorus-MelanommodellRegneri, Janine January 2013 (has links) (PDF)
The Xiphophorus melanoma system is a useful animal model for the study of the genetic basis of tumor formation. The development of hereditary melanomas in interspecific hybrids of Xiphophorus is connected to pigment cell specific overexpression of the mutationally activated receptor tyrosine kinase Xmrk. In purebred fish the oncogenic function of xmrk is suppressed by the molecularly still unidentified locus R. The xmrk oncogene was generated by a gene duplication event from the Xiphophorus egfrb gene and thereby has acquired a new 5’ regulatory sequence, which has probably altered the transcriptional control of the oncogene. So far, the xmrk promoter region was still poorly characterized and the molecular mechanism by which R controls xmrk-induced melanoma formation in Xiphophorus still remained to be elucidated. To test the hypothesis that R controls melanoma development in Xiphophorus on the transcriptional level, the first aim of the thesis was to gain a deeper insight into the transcriptional regulation of the xmrk oncogene. To this end, a quantitative analysis of xmrk transcript levels in different Xiphophorus genotypes carrying either the highly tumorigenic xmrkB or the non-tumorigenic xmrkA allele was performed. I was able to demonstrate that expression of the tumorigenic xmrkB allele is strongly increased in malignant melanomas of R-free backcross hybrids compared to benign lesions, macromelanophore spots, and healthy skin. The expression level of the non-tumorigenic xmrkA allele, in contrast, is not influenced by the presence or absence of R. These findings strongly indicate that differential transcriptional regulation of the xmrk promoter triggers the tumorigenic potential of these xmrk alleles. To functionally characterize the xmrk promoter region, I established a luciferase assay using BAC clones containing the genomic regions where xmrk and egfrb are located for generation of reporter constructs. This approach showed for the first time a melanoma cell specific transcriptional activation of xmrkB by its flanking regions, thereby providing the first functional evidence that the xmrk oncogene is controlled by a pigment cell specific promoter region. Subsequent analysis of different deletion constructs of the xmrkB BAC reporter construct strongly indicated that the regulatory elements responsible for the tumor-inducing overexpression of xmrkB in melanoma cells are located within 67 kb upstream of the xmrk oncogene. Taken together, these data indicate that melanoma formation in Xiphophorus is regulated by a tight transcriptional control of the xmrk oncogene and that the R locus acts through this mechanism. As the identification of the R-encoded gene(s) is necessary to fully understand how melanoma formation in Xiphophorus is regulated, I furthermore searched for alternative R candidate genes in this study. To this end, three genes, which are located in the genomic region where R has been mapped, were evaluated for their potential to be a crucial constituent of the regulator locus R. Among these genes, I identified pdcd4a, the ortholog of the human tumor suppressor gene PDCD4, as promising new candidate, because this gene showed the expression pattern expected from the crucial tumor suppressor gene encoded at the R locus. / Fische der Gattung Xiphophorus sind ein gut etabliertes Modellsystem zur Analyse der genetischen Grundlagen der Tumorentwicklung. Die Entwicklung hereditärer Melanome in bestimmten interspezifischen Xiphophorus-Hybriden wird durch die pigmentzellspezifische Überexpression des Onkogens xmrk ausgelöst. Dieses Gen codiert für eine durch Mutationen aktivierte Rezeptortyrosinkinase. In den reinerbigen Elterntieren wird die onkogene Funktion von xmrk durch den Regulator-Locus R unterdrückt, welcher jedoch auf molekularer Ebene noch nicht identifiziert wurde. Das Onkogen xmrk ist durch eine Genduplikation aus dem Protoonkogen egfrb entstanden und hat dabei eine neue regulatorische 5‘ Region erhalten, welche mit hoher Wahrscheinlichkeit die transkriptionelle Regulation des Onkogens verändert hat. Die Promotorregion von xmrk war allerdings bisher nur unzureichend charakterisiert und der molekulare Mechanismus, durch den der R-Locus die xmrk-induzierte Melanomentwicklung kontrolliert, war noch weitgehend unbekannt. Um zu analysieren, ob der R-Locus die Melanomentwicklung in Xiphophorus auf transkriptioneller Ebene kontrolliert, war das erste Ziel dieser Arbeit die transkriptionelle Regulation des xmrk Onkogens genauer zu untersuchen. Zu diesem Zweck habe ich eine quantitative Analyse der xmrk Expressionslevel in Geweben verschiedener Xiphophorus-Genotypen durchgeführt, welche entweder das stark tumorigene xmrkB oder das nicht tumorigene xmrkA Allel besitzen. Ich konnte zeigen, dass im Vergleich zu benignen Läsionen, Macromelanophoren und gesunder Haut, die Expression des tumorigenen xmrkB Allels in den malignen Melanomen der R-defizienten Rückkreuzungshybride stark erhöht ist. Das Expressionslevel des xmrkA Allels wird hingegen nicht durch den R-Locus beeinflusst. Dieses Ergebnis deutet darauf hin, dass eine differenzielle transkriptionelle Regulierung des xmrk Promotors für die Unterschiede im onkogenen Potential dieser Allele verantwortlich ist. Um die xmrk Promotorregion funktional zu charakterisieren, habe ich in der hier vorliegenden Studie einen Luciferase-Assay etabliert, für den BAC-Klone, welche die xmrk- oder egfrb-Region enthalten, zur Herstellung von Reporterkonstrukten verwendet wurden. Mit Hilfe dieses Ansatzes konnte ich zum ersten Mal eine melanomzellspezifische Aktivierung des xmrkB Gens durch seine regulatorischen Regionen zeigen. Dies liefert den ersten funktionalen Beweis, dass das xmrk Onkogen tatsächlich durch einen pigmentzellspezifischen Promotor kontrolliert wird. Durch die nachfolgende Analyse einer Deletionsserie des xmrkB Reporterkonstrukts konnte gezeigt werden, dass die regulatorischen Elemente, welche die starke Überexpression von xmrk in Melanomzellen steuern, in den proximalen 67 kb der xmrk 5‘ Region lokalisiert sind. Zusammengefasst deuten diese Ergebnisse darauf hin, dass die Melanomentwicklung in Xiphophorus durch eine strikte transkriptionelle Kontrolle des xmrk Onkogens reguliert wird und dass der Regulator-Locus R seine tumorsuppressive Funktion über diesen Mechanismus ausübt. Da die Identifizierung des R-Locus-Gens entscheidend ist, um die Melanomentwicklung in Xiphophorus vollständig zu verstehen, habe ich im zweiten Teil dieser Arbeit drei Gene, welche in derselben genomischen Region liegen in der R lokalisiert wurde, genauer untersucht, um zu testen, ob es sich bei einem dieser Gene um eine entscheidende tumorsuppressive Komponente des R-Locus handelt. Von diesen Genen wurde pdcd4a, welches das Ortholog zum humanen Tumorsuppressorgen PDCD4 ist, als vielversprechendes neues Kandidatengen identifiziert, da das Expressionsmuster von pdcd4a mit dem zu erwartenden Expressionsmuster des am R-Locus codierten Tumorsuppressorgens übereinstimmt.
|
7 |
Identifizierung und Charakterisierung von Genen und Proteinen in der Xmrk-induzierten Entwicklung von Melanomen / Identification and characterization of genes and proteins in Xmrk-induced melanomagenesisTeutschbein, Janka January 2008 (has links) (PDF)
Melanome stellen die gefährlichste Form von Hautkrebs mit der höchsten Mortalitätsrate dar. Der Transformation normaler Melanozyten zu malignen Melanomen liegen komplexe molekulare und biochemische Veränderungen zu Grunde. Im Xiphophorus-Melanom-Modell ist die onkogene Rezeptortyrosinkinase "Xiphophorus melanoma receptor kinase" (Xmrk) der alleinige Auslöser der Melanominitiation und -progression. Die Aufklärung der Xmrk-vermittelten Signaltransduktion kann zum besseren Verständnis von Ereignissen, die auch bei der humanen Melanomentwicklung eine Rolle spielen, beitragen. In der vorliegenden Arbeit wurde mit Hilfe der Microarray-Technologie die Regulation der Genexpression durch Xmrk analysiert. Zu den nach Rezeptoraktivierung am stärksten herabregulierten Genen gehörten "son of sevenless homolog 1" (Sos1) und "ubiquitin-conjugating enzyme E2I" (Ube2i); stark hochreguliert waren "early growth response 1" (Egr1), "cysteine-rich protein 61" (Cyr61), "dual-specificity phosphatase 4" (Dusp4), "fos-like antigen 1" (Fosl1), "epithelial membrane protein" (Emp1), Osteopontin (Opn), "insulin-like growth factor binding protein 3" (Igfbp3) und "tumor-associated antigen L6" (Taal6). Die für die Regulation dieser Gene verantwortlichen Signalwege wurden durch die Anwendung von niedermolekularen Inhibitoren und siRNA identifiziert, wobei für die SRC-Kinase FYN eine zentrale Bedeutung bei der Xmrk-abhängigen Regulation der Genexpression festgestellt wurde. Darüber hinaus wurde die Expression der Gene in humanen Melanomzelllinien im Vergleich zu normalen humanen Melanozyten untersucht. Als besonders vielversprechende Kandidaten stellten sich dabei DUSP4 und TAAL6 heraus, deren Rolle in der humanen Melanominduktion und -progression Gegenstand zukünftiger Studien sein wird. In einem anderen Ansatz zur Aufklärung des Signalnetzwerkes sollten Zielproteine von Xmrk durch Protein-Protein-Interaktionsstudien mit Hilfe des Split-Ubiquitin-Systems ermittelt werden. Aufgrund ungünstiger Expressions- oder Faltungseigenschaften von Xmrk in diesem System war es aber nicht möglich, den Rezeptor als Köderprotein einzusetzen. Das für die Xmrk-vermittelte Melanomentstehung zentrale Protein FYN konnte jedoch als Köder etabliert und seine Wechselwirkung mit der Tyrosinkinase FAK analysiert werden. Es wurde gezeigt, dass der phosphorylierte Tyrosinrest an Position 397 von FAK für die Interaktion einer N-terminal trunkierten FAK-Variante mit FYN notwendig ist und dass diese Phosphorylierung in Hefe gewährleistet zu sein scheint. Die Suche nach neuen Interaktionspartnern von FYN mittels der Split-Ubiquitin-Technologie könnte Einblicke in weitere FYN-abhängige Ereignisse bieten, die zur Aufklärung seiner zentralen Rolle bei der Tumorentstehung dienen könnte. / Melanoma is the most aggressive type of skin cancer with the highest mortality rate. The transformation of melanocytes to malignant melanoma is based on complex molecular and biochemical alterations. In the Xiphophorus melanoma model, the oncogenic receptor tyrosine kinase Xiphophorus melanoma receptor kinase (Xmrk) is the sole trigger of melanoma initiation and progression. Elucidating Xmrk-dependent signaling pathways may contribute to a better understanding of processes that play a role in human melanomagenesis, too. Here, the regulation of gene expression by Xmrk was analyzed using a microarray approach. The genes with the strongest down-regulation in response to receptor activation included son of sevenless homolog 1 (Sos1) and ubiquitin-conjugating enzyme E2I (Ube2i), whereas early growth response 1 (Egr1), cysteine-rich protein 61 (Cyr61), dual-specificity phosphatase 4 (Dusp4), fos-like antigen 1 (Fosl1), epithelial membrane protein (Emp1), Osteopontin (Opn), insulin-like growth factor binding protein 3 (Igfbp3), and tumor-associated antigen L6 (Taal6) were strongly up-regulated. The pathways regulating expression of these genes were identified by applying small molecule inhibitors and siRNA. Interestingly, the SRC-family kinase FYN was found to be a key-player in Xmrk-dependent gene regulation. Furthermore, expression of the genes in human melanoma cell lines compared to normal human melanocytes was investigated. The most promising candidates, which might be important for melanoma induction and progression, were DUSP4 and TAAL6. Their potential suitability as diagnostic and prognostic melanoma markers will be addressed in future studies. In addition to gene expression analysis, protein-protein interactions were to be assayed by the split-ubiquitin-system in order to identify novel Xmrk targets. Unfortunately, inappropriate expression or folding of the receptor in this system precluded it from working as bait. However, the FYN protein, which has a central role in Xmrk-mediated signaling, was established as bait and its association with FAK was analyzed in more detail. A phosphorylated tyrosine residue at position 397 of FAK was demonstrated to be necessary for the interaction of an N-terminally truncated FAK variant with FYN, and this phosphorylation event seems to be feasible in yeast. In future, a split-ubiquitin based screen for novel interaction partners of FYN might provide insights into FYN-dependent processes and help to understand its central role in tumor development.
|
Page generated in 0.078 seconds