Spelling suggestions: "subject:"scintillator"" "subject:"scintillation""
41 |
The effects of using aliovalent doping in cerium bromide scintillation crystalsHarrison, Mark J. January 1900 (has links)
Doctor of Philosophy / Department of Mechanical and Nuclear Engineering / Douglas S. McGregor / Strengthening the crystal lattice of lanthanide halides, which are brittle, anisotropic, ionic crystals may increase the availability and ruggedness of these scintillators for room-temperature γ-ray spectroscopy applications. Eight dopants for CeBr[subscript]3, including CaBr[subscript]2, SrBr[subscript]2, BaBr[subscript]2, ZrBr[subscript]4, HfBr[subscript]4, ZnBr[subscript]2, CdBr[subscript]2, and PbBr[subscript]2, were explored at two different doping levels, 500ppm and 1000ppm, in an effort to identify potential aliovalent strengthening agents which do not adversely affect scintillation performance. All dopants and doping levels exhibited improved ingot yields over the undoped case, indicating an improvement in the ease of crystal growth.
Scintillation performance was gauged using four key metrics. Scintillation emission spectra or, rather, radioluminescence spectra were recorded using x-ray irradiation. Total light yield was estimated through pulse height comparison with bismuth germanate (BGO) scintillators. Scintillation kinetics were checked by measuring single interaction pulses directly output by a fast response PMT. Finally, light yield proportionality was measured using a Compton coincidence system.
Samples from each ingot were harvested to benchmark their performance with the four metrics. Of the eight dopants explored, only BaBr[subscript]2 and PbBr[subscript]2 clearly altered scintillation spectral emission characteristics significantly. The remaining dopants, CaBr[subscript]2, SrBr[subscript]2, ZrBr[subscript]4, HfBr[subscript]4, CdBr[subscript]2 and ZnBr[subscript]2, altered scintillation performance to a lesser degree. No dopant appeared to affect light yield proportionality, nor did any drastically alter the light decay characteristics of CeBr[subscript]3. HfBr[subscript]4 and ZnBr[subscript]2-doped CeBr[subscript]3 exhibited the highest light yields, significantly higher than the undoped CeBr[subscript]3 samples tested.
Finally, aliovalent doping appeared to greatly improve CeBr[subscript]3 ingot yields, regardless of the dopant, thus it is a promising method for improving crystal strength while not deleteriously affecting scintillation performance. HfBr[subscript]4 and ZnBr[subscript]2 both demonstrated high performance without any noticeable negative side-effects and are prime candidates for future study.
|
42 |
Development of a Thermoluminescence - Radioluminescence Spectrometer / Desenvolvimento de um Espectrômetro de Termoluminescência - RadioluminescênciaFrança, Leonardo Vinícius da Silva 29 March 2018 (has links)
In this work, initially the radioluminescence (RL) and thermoluminescence (TL) techniques are presented. The radioluminescence is the prompt luminescence emitted by a material under ionizing radiation exposure. The thermoluminescence is the luminescence emitted by a material previously exposed to ionizing radiation when excited by heat. Enegy bands concepts, defects in crystals and the different processes of ionization that take place in matter when exposed to ionizing radiation are briefly discussed in order to present the mechanisms involved in RL and TL processes. The usage of the techniques in characterization of materials and dosimetry is reported, legitimating the importance of the instrument developed. Mechanical and structural parts as well as a description of each component of the instrument are fairly described. The implemented algorithm for controlling the instrument and acquiring data is also discussed. The development of the instrument enabled us to generate temperature ramps with a quite good performance, reaching temperatures up to 500 °C with deviations up to 2 °C, having used heating rates between 0.5 °C/s and 5 °C/s. Calibrations of optical spectrometer used in light collection and irradiation system were carried out. Lastly, TL and RL spectra tests were performed. The RL tests were carried out using several materials which emission spectra are well known by literature, namely, carbon-doped aluminium oxide Al2O3:C, terbium-doped gadolinium oxysulphide Gd2O2S:Tb, europium-doped yttrium oxide Y2O3:Eu and dysprosium-doped calcium borate CaB6O10:Dy. For the TL spectra test, the aluminium oxide doped with carbon Al2O3:C was used. The results of RL and TL spectra tests showed a good agreement with the literature, pointing out that the instrument developed in this work is comparable to others instruments in operation from others research groups, making our results reliable. / Nesse trabalho, inicialmente as técnicas de radioluminescência (RL) e termolumi- nescência (TL) são apresentadas. A radioluminescência é a luminescência imediata emitida por um material quando exposto à radiaçao ionizante. A termoluminescência é a luminescência emitida por um material previamente exposto à radiação quando este é aquecido. Conceitos de bandas de energia, defeitos em cristais e os diferentes processos de ionização que ocorrem na matéria quando exposta à radiação ionizante são brevemente discutidos a fim de apresentar os mecanismos envolvidos na RL e TL. A utilização das técnicas na caracterização de materiais e na dosimetria é reportada, justificando a importância do instrumento desenvolvido. As partes mecânicas/estruturais e uma descrição de cada componente do instrumento são descritos. O algoritmo implementado para controle do instrumento e aquisição de dados é também descrito. O desenvolvimento do instrumento possibilitou a geração de rampas de temperatura com uma boa performance, atingindo até 500 °C com variações de até 2 °C ao utilizar taxas de aquecimento entre 0.5 °C/s e 5 °C/s. Calibrações do espectrômetro óptico utilizado na aquisição da luminescência e do sistema de irradiação foram executadas. Por fim, testes de aquisição de espectros de RL e TL foram realizados. Os testes de RL foram realizados utilizando vários materiais cujos espectros de emissão são bem conhecidos pela literatura, a saber, óxido de alumínio dopado com carbono Al2O3:C , oxisulfeto de gadolínio dopado com térbio Gd2O2S:Tb , óxido de ítrio dopado com európio Y2O3:Eu e borato de cálcio dopado com disprósio CaB6O10:Dy. Para o teste dos espectros de TL, o Al2O3:C foi utilizado. Os resultados dos espectros de RL e TL mostraram concordância com a literatura, indicando que o instrumento desenvolvido é comparável a outros instrumentos em operação de outros grupos, tornando os nossos resultados confiáveis.
|
43 |
Development of cryogenic low background detector based on enriched zinc molybdate crystal scintillators to search for neutrinoless double beta decay of ¹⁰⁰Mo / Développement de détecteurs cryogéniques à faible bruit de fond composés de cristaus scintillateurs enrichis en molybdate de zinc pour la recherch de la double désintégration beta sans neutrinos du ¹⁰⁰MoChernyak, Dmitry 08 July 2015 (has links)
L’observation de la double désintégration bêta sans neutrinos (0ν2β) impliquerait la violation de la conservation du numéro leptonique, signe d’une nouvelle physique au-delà du Modèle Standard, et permettrait d’établir la nature de Majorana des neutrinos. Les bolomètres scintillants cryogéniques sont parmi les détecteurs les plus prometteurs pour rechercher ce processus nucléaire extrêmement rare dans des noyaux qui sont théoriquement entre les plus favorables.Des scintillateurs de ZnMoO₄ ayant une masse de ∼ 0.3 kg, ainsi que des cristaux de Zn¹⁰⁰ MoO₄ enrichi dans l’isotope ¹⁰⁰Mo, ont été produits pour la première fois en utilisant la technique de Czochralski à faible gradient thermique. Les propriétés optiques et de luminescence des cristaux produits ont été étudiées pour évaluer le progrès de la qualité de la croissance des cristaux. Des tests à basse température avec un scintillateur de 313 g de ZnMoO₄et deux scintillateurs de Zn¹⁰⁰ MoO₄ enrichis ont été réalisées en surface au Centre de Sciences Nucléaires et de Sciences de la Matière. On a aussi mené des mesures à faible fond radioactif avec trois cristaux de ZnMoO₄ naturels et deux détecteurs enrichis, installés dans le setup d’ EDELWEISS au Laboratoire Souterrain de Modane.Pour optimiser la collecte de la lumière dans des bolomètres scintillants cryogénique de ZnMoO₄, nous avons simulé par une méthode Monte Carlo la collecte des photons de scintillation dans un module de détection pour différentes géométries, en utilisant le logiciel GEANT4. La réponse à la désintégration 2ν2β de ¹⁰⁰Mo a été simulée pour des détecteurs enrichis de Zn¹⁰⁰ MoO₄ avec forme et masse différente, avec le but de comprendre la structure des spectres 2ν2β en fonctionne de la forme des cristaux. Nous avons simulé aussi la performance de 48 cristaux de Zn¹⁰⁰ MoO₄ ayant une taille de Ø60 × 40 mm et installés dans le cryostat d’EDELWEISS. La contribution au fond de la contamination radioactive interne des cristaux, l’activation cosmogénique et la contamination radioactive du setup ont été simulées.Tenant compte de la modeste résolution temporelle des bolomètres à basse température, nous avons également étudié la contribution au fond à l'énergie Q₂β déterminé par des coïncidences aléatoires de signaux, en particulier du à la décroissance 2ν2β, qui est l'une des sources de fond les plus dangereuses dans les bolomètres cryogéniques. Des méthodes pour le rejet d’événements coïncidant par hasard ont été développées et comparées. Nous avons également analysé la dépendance de l'efficacité de rejet à l’égard des performances du détecteur cryogénique. / Observation of neutrinoless double beta (0ν2β) decay would imply the violation of lepton number conservation and definitely new physics beyond the Standard Model, establishing the Majorana nature of neutrinos. Cryogenic scintillating bolometers look the most promising detectors to search for this extremely rare nuclear process in a few theoretically the most favorable nuclei.ZnMoO₄ scintillators with a mass of ∼ 0.3 kg, as well as Zn¹⁰⁰ MoO₄ crystals enriched in the isotope ¹⁰⁰Mo were produced for the first time by using the low-thermal-gradient Czochralski technique. The optical and luminescent properties of the produced crystals were studied to estimate the progress in crystal growth quality. The low-temperature tests with a 313 g ZnMoO₄ scintillator and two enriched Zn¹⁰⁰ MoO₄ were performed aboveground in the Centre de Sciences Nucléaires et de Sciences de la Matière. The low background measurements with a three ZnMoO₄ and two enriched detectors installed in the EDELWEISS set-up at the Laboratoire Souterrain de Modane were carried out.To optimize the light collection in ZnMoO₄ cryogenic scintillating bolometers, we have simulated the collection of scintillation photons in a detector module for different geometries by Monte Carlo method using the GEANT4 package. Response to the 2ν2β decay of ¹⁰⁰Mo was simulated for the enriched Zn¹⁰⁰ MoO₄ detectors of different shape and mass to understand the dependence of 2ν2β decay spectra on crystal shape. We have simulated 48 Zn¹⁰⁰ MoO₄ crystals with a size of Ø60 × 40 mm installed in the EDELWEISS cryostat. The contribution to background from the internal radioactive contamination of the crystals, cosmogenic activation and radioactive contamination of the set-up were simulated.Taking into account the poor time resolution of the low temperature bolometers, we also studied contribution to background at the Q₂β energy of random coincidences of signals, in particular of 2ν2β decay, which is one of the most valuable sources of background in cryogenic bolometers. Methods of the randomly coinciding events rejection were developed and compared. We have also analyzed dependence of the rejection efficiency on a cryogenic detector performance.
|
44 |
Studies of cosmic rays with the anticoincidence system of the PAMELA satellite experimentOrsi, Silvio January 2007 (has links)
PAMELA is a satellite-borne experiment designed to study the charged component of the cosmic radiation of galactic, solar and trapped nature. The main scientific objective is the study of the antimatter component of cosmic rays over a wide range of energies (antiprotons: 80 MeV–190 GeV, positrons: 50 MeV–270 GeV). PAMELA is also searching for antinuclei with a precision ~10^−7 in anti-He/He measurements. PAMELA is mounted on the Resurs DK1 satellite that was launched on June 15th 2006 from the Baikonur cosmodrome and is now on a semipolar (69.9°) elliptical (350 × 600 km) orbit. The experiment has been acquiring data since July 11th 2006 and has a foreseen lifetime of at least 3 years. The PAMELA apparatus consists of a permanent magnet silicon spectrometer, an electromagnetic imaging calorimeter, a time of flight system, a scintillator-based anticoincidence (AC) system, a tail catcher scintillator and a neutron detector. The AC system can be used to reject particles not cleanly entering the PAMELA acceptance. Tests of the PAMELA instrument in its final flight configuration involved long duration acquisition runs with cosmic particles (mainly muons) on ground. A study of the functionality of the AC system during these runs is presented here with a set of selected muons. Studies of activity in the AC detectors as function of the rigidity of the muons and in correlation with the activity in the spectrometer and in the calorimeter are presented. A study of the AC system functionality during in-flight operations provides a map of the particle flux in orbit, and shows the anisotropy in the arrival direction of trapped particles in the Van Allen radiation belts. The singles rates indicate that the AC system saturates in the South Atlantic anomaly (SAA). Information from the AC system in the SAA is therefore not reliable for physics analysis. The timing and multiplicity of AC activity correlated to particle triggers has been studied. A dependence on orbital position was observed. An LED (Light Emitting Diode) based monitoring system was designed to determine the in-orbit behaviour of the AC system independently of the radiation environment and to compare it to the pre-launch behaviour. The LED system shows that the properties of the AC system are stable during flight and that no significant changes in performance occurred as a result of the launch. / QC 20100811
|
45 |
Development and testing of an organic scintillator detector for fast neutron spectrometryMickum, George Spencer 10 April 2013 (has links)
The use of organic scintillators is an established method for the measurement of neutron spectra above several hundred keV. Fast neutrons are detected largely by proton recoils in the scintillator resulting from neutron elastic scattering with hydrogen. This leads to a smeared rectangular pulse-height distribution for monoenergetic neutrons. The recoil proton distribution ranges in energy from zero to the incident neutron energy. In addition, the pulse-height distribution is further complicated by structure due to energy deposition from alpha particle recoils from interactions with carbon as well as carbon recoils themselves. In order to reconstruct the incident neutron spectrum, the pulse-height spectrum has to be deconvoluted (unfolded) using the computed or measured response of the scintillator to monoenergetic neutrons. In addition gamma rays, which are always present when neutrons are present, lead to Compton electron recoils in the scintillator. Fortunately, for certain organic scintillators, the electron recoil events can be separated from the heavier particle recoil events in turn to distinguish gamma-ray induced events from neutron-induced events. This is accomplished by using the risetime of the pulse from the organic scintillator seen in the photomultiplier tube as a decay of light.
In this work, an organic scintillator detection system was assembled which includes neutron-gamma separation capabilities to store the neutron-induced and gamma-induced recoil spectra separately. An unfolding code was implemented to deconvolute the spectra into neutron and gamma energy spectra. In order to verify the performance of the system, a measurement of two reference neutron fields will be performed with the system, unmoderated Cf-252 and heavy-water moderated Cf-252. After the detection system has been verified, measurements will be made with an AmBe neutron source.
|
46 |
Experimental and theoretical determination of the imaging characteristics in new phosphor-scintillator materials with cerium (Ce3+) activators applied in medical digital detectors / Πειραματικός και θεωρητικός προσδιορισμός απεικονιστικών χαρακτηριστικών νέων υλικών φωσφόρων-σπινθηριστών με ενεργοποιητή ιόντων δημητρίου (Ce3+) για χρήση σε ψηφιακούς ανιχνευτές ιατρικής απεικόνισηςΜιχαήλ, Χρήστος 18 February 2009 (has links)
- / -
|
47 |
Evaluation of physical characteristics of the Lu2SiO5:Ce3+ (LSO:Ce) scintillator in single crystal and in granular form for applications in X-ray medical imaging systems / Πειραματική και θεωρητική αξιολόγηση φυσικών χαρακτηριστικών φωσφόρων-σπινθηριστών ταχείας απόκρισης με ενεργοποιητή ιόντων δημητρίου (Ce3+) για εφαρμογή σε συστήματα ιατρικής απεικόνισηςΔαυίδ, Ευστράτιος 27 March 2009 (has links)
For all medical imaging systems using X-rays or γ-rays, radiation detector development in general and scintillator development in particular are in full progress. There is a strong interest in the introduction of new dense, high-atomic-number inorganic scintillation crystals with a high light yield and a fast response, especially for PET and SPECT. Powder scintillators are of interest for projection X-ray imaging. For PET, research is focused on CeP3+P doped scintillators, employing the 5d → 4f transitions. A high light yield is expected in the visible region. The time response in PET/CT applications will be in the 25–100 ns range. Improved energy resolution will also be a point of interest. For CT, time response requirements are at the microsecond level for decay time and the afterglow should be well below 10P−4Ps. For X-ray screens light spreading should be kept under control, e.g. by denser material like LSO:Ce, or columnar phosphors (CsI:TI) and by shorter luminescence emission wavelength which shows higher light attenuation of laterally directed photons. In this study we examine, both in powder and in crystal form, the detection efficiency of LuB2BSiOB5B:Ce, the absolute luminescence efficiency, the X-ray to luminescence efficiency, the spectral compatibility and the effective efficiency using various optical detectors. All these measurements were conducted in the X-ray energy range from 22 to 140 kVp used in medical X-ray imaging.
In conclusion the X-ray quantum detection efficiency and the X-ray energy absorption efficiency of a LSO:Ce powder scintillator screen of 25 mg/cmP2 Pcoating thickness were found higher than currently employed materials (e.g. GdB2BOB2BS: Tb and CsI:Tl) for detection of X-rays used in mammographic applications. The absolute luminescence efficiency of this screen maintains high values, within the mammographic energy range and the intrinsic conversion efficiency was found close to that of CsI:Tl but lower than that of GdB2BOB2BS:Tb. In ragiographic energy range the screen of 172.5 mg/cmP2P exchibit the higher values of ALE and XLE. The emission spectrum of LSO:Ce screens showed excellent spectral compatibility with currently used digital detectors and taking also into account its very fast response it could be considered for applications in digital X-ray imaging systems.
The LSO:Ce scintillator crystal shows higher absolute luminescence efficiency values (17,86 at 140kVp) than the corresponding of BGO crystal (3,40 at 140 kVp). LSO:Ce X-ray luminescence efficiency was found higher than the corresponding of BGO crystal in the whole range of energies used in our study. The higher value of DOG, 2430 gain units, showed at 140 kVp X-ray tube voltage for the LSO:Ce scintillator when the corresponding value at the same energy of the BGO is 1670 units. In the mammographic energy range the difference between the above measured values was smaller than the ones obtained in the radiographic energy region. This lead us to the assumption that LSO:Ce crystal can be efficiently used for X-ray energy imaging (under 100 kVp) as those used in CT applications. The intrinsic conversion efficiency was estimated to be significantly higher for LSO:Ce, which in addition is higher than more of the currently employed scintillators. The light emission spectrum of the LSO:Ce scintillator, peaking at about 420 nm, was found compatible to many currently employed optical photon detectors. Its very short scintillation decay time and its high detection efficiency, both in terms of QDE and EAE, they can be crucial for the applications of this scintillator in modern fast image producing X-ray computed tomography systems, especially those employed in combined PET/CT devices. 12/−−⋅⋅smRmWμ12/−−⋅⋅smRmWμ
The comparison of the ALE and the XLE of the LSO:Ce single crystal scintillator with that of the efficient powder LSO:Ce scintillator shows that the LSO:Ce screens can be used: i) in modern scinti-mammography/ X-ray mammography systems in which one common fast scintillator in powder form may satisfy the requirements of both modalities and the strict requirements in spatial resolution and ii) in applications where single crystals have to be replaced by powder or ceramic scintillators in order to improve spatial resolution (eg. in ring type SPECT detectors and in combined SPECT/CT detectors). In addition, this comparison may be of interest since powder scintillators are of lower cost than the corresponding single crystals. / -
|
48 |
Συστηματική μελέτη της απόδοσης εκπομπής φωτός και των αντίστοιχων ενδογενών φυσικών χαρακτηριστικών μονοκρυσταλλικών σπινθηριστών, με ενεργοποιητή τρισθενές δημήτριο (Ce3+) σε ευρεία κλίμακα ενεργειών (20kV-18MV) για ιατρικές εφαρμογές / Systematic study of the light emission efficiency and the corresponding intrinsic physical characteristics of single crystal scintillators, doped with the trivalent cerium (Ce3+) activator, in wide energy range (from 20kV-18MV) for medical applicationsΒαλαής, Ιωάννης 14 October 2008 (has links)
Ο σκοπός της παρούσας διατριβής είναι να συμβάλει στην επιλογή του βέλτιστου σπινθηριστή ανάμεσα σε αυτούς που χρησιμοποιούνται στα σύγχρονα απεικονιστικά συστήματα τομογραφίας εκπομπής ποζιτρονίων PET και PET μικρών ζώων, ο οποίος θα μπορούσε να χρησιμοποιηθεί σε ένα ανιχνευτικό σύστημα πολλαπλών εφαρμογών PET/CT, MV CBCT, κλπ.) με έναν κοινό ανιχνευτή. Για το σκοπό αυτό μελετήθηκαν δείγματα από τους ακόλουθους κρυσταλλικούς σπινθηριστές: α) πυριτικού οξειδίου του γαδολινίου (GSO), β) πυριτικού οξειδίου του λουτεσίου (LSO), γ) πυριτικού οξειδίου του λουτεσίου-υτρίου (LΥSO), δ) αλουμινικού οξειδίου του υτρίου (YAP) και ε) αλουμινικού οξειδίου του λουτεσίου-υτρίου (LuYAP). Όλα τα δείγματα των σπινθηριστών ήταν ενεργοποιημένα με τρισθενές δημήτριο (Ce+3). Η μελέτη έγινε σε ευρεία κλίμακα ενεργειών (20kV-18MV). / The aim of this thesis was to select the best scintillator among the ones currently used in PET and animal PET systems, which could be used in a single detector multimodality scanner. To this aim crystal samples of GSO, LSO, LYSO, LuYAP and YAP scintillators, doped with cerium (Ce+3) were examined under a wide energy range (from 20kV-18MV). Measurements concerning determination of absolute efficiency, energy absorption efficiency, intrinsic conversion efficiency, detector optical gain and detector quantum efficiency, giving information on light yield and the intrinsic properties of the scintillators. Information on the compatibility of the light emission spectrum of the scintillators with the currently used optical photon detectors was obtained by calculating the spectral matching factors of each scintillator examined.
|
49 |
The development of a plastic scintillator for radiotherapy dosimetryMorales, Johnny Estuardo. January 2008 (has links)
Thesis (MSc.-Res.)--University of Wollongong, 2008. / Typescript. Includes bibliographical references: leaf 66-69.
|
50 |
Sistema primario por coincidencias 4 pi beta-gama para a padronizacao de radionuclideos empregando cintiladores plasticosBACCARELLI, AIDA M. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:48:40Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:59:57Z (GMT). No. of bitstreams: 1
09020.pdf: 3988111 bytes, checksum: 2604028ac5be423a7b85b745a959fb86 (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
|
Page generated in 0.0842 seconds